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ETH Zurich
Swiss Seismological Service
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ABSTRACT

This paper proposes a method to compute the likelihood func-

tion for the amplitudes and phase shifts of noisily observed

phase-locked and amplitude-constrained sinusoids. The sinu-

soids are assumed to be coupled based on a set of parame-

ters as, e.g., measurements of a monochromatic wave field.

A factor graph is used to formulate the probability density

function of the observations given the parameters. The fac-

tor graph consists of one second-order state-space model per

signal and one additional factor connecting all the final states.

Because the parameters appear only in this latter factor, we

are able to formulate a sufficient statistic for parameter esti-

mation and signal detection in terms of messages in the fac-

tor graph. In special cases, the general form of the sufficient

statistic reduces to the discrete Fourier transform. As exten-

sions we provide iterative algorithms for approximate maxi-

mum likelihood estimation of the noise variances and the pa-

rameters of superposed waves.

Index Terms— factor graph, sinusoid, detection, estima-

tion, likelihood function

1. INTRODUCTION

Phase-coupled and amplitude-constrained sinusoids play an

important role in many fields ranging from sensor arrays in

seismology [1], acoustics, and electromagnetics to multi-

terminal communication. Parameter estimation for, and

detection of, uncoupled sinusoids is described e.g. in [2]

and [3]. However, as soon as we consider some coupling, a

linear model does not apply anymore. This paper provides a

unified and general approach to estimation and detection of

coupled sinusoids based on a factor graph representation [4].

Consider L discrete-time sinusoidal signals

ξ
(�)
k = α� cos(Ωk + ψ�) , (1)

where � = 1, . . . , L enumerates the signals and k = 0, . . . ,
K − 1 is the time index. All L signals have the same, known

frequency Ω but differ in amplitude α� and phase ψ�. We

observe the noisy signal Y
(�)
k = ξ

(�)
k + Z

(�)
k , where Z

(�)
k are

zero-mean white Gaussian noises with noise variances σ2
� for

� = 1, . . . , L. Note that we allow σ2
� to differ in each signal.

Unconstrained estimation of α� and ψ� is a well known

problem [2]. This paper, however, deals with coupled sig-

nals. Specifically we assume that the amplitudes α� and phase

shifts ψ� are constrained by some parameter vector θ via some

mapping

Γ : θ �→ (
(α1, ψ1), . . . , (αL, ψL)

)
. (2)

As a toy example assume that we have two signals (1)

with unconstrained amplitudes α1 and α2 but with the same

phase ψ � ψ1 = ψ2. We are interested in α1, α2 and ψ.

In this example one possible choice is θ = (ρ0, φ0, β) and

Γ(θ) =
(
(ρ0, φ0), (βρ0, φ0)

)
.

For a more relevant example consider the estimation of

seismic wave fields measured by a sensor array. In this exam-

ple, θ may contain wave field parameters such as wave type,

velocity of propagation, angle of arrival, etc. The mapping

Γ would include sensor characteristics and positions. (This

setting is treated in more detail in [1].)

We use the term wave for ξ � {ξ(�)k }�=1,...,L,k=0,...,K−1

induced by the parameters θ given the mapping (2). For the

noisy signal we define Y (�) �
(
Y

(�)
0 , . . . , Y

(�)
K−1

)
and Y �(

Y (1), . . . , Y (L)
)
. Given observations Y = y, we want to for-

mulate the likelihood function f(y |θ) in order to make maxi-

mum likelihood (ML) estimates

θ̂ = argmax
θ

f(y |θ) (3)

and to compute the generalized log-likelihood ratio (LLR)

ln
f
(
y
∣∣θ̂)

f(y |H0)
, (4)

where the hypothesis H0 is the presence of only noise. (The

LLR is usually used for signal detection [3].)

Clearly, the likelihood can be written as

f(y |θ) =
L∏

�=1

K−1∏
k=0

1√
2πσ2

�

e−
(
y
(�)
k −ξ

(�)
k (θ)

)2/
(2σ2

� ) . (5)
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Fig. 1: state-space model for sinusoid

=

U = u(θ)

H1(θ)
S1

HL(θ)
SL

Fig. 2: Glue factor gθ

gθ

X
(1)
K

� S1

X
(1)
k+1

y
(1)
k

X
(1)
k X

(1)
1

y
(1)
0

X
(L)
K

� SL

X
(L)
k+1

y
(L)
k

X
(L)
k X

(L)
1

y
(L)
0

Fig. 3: Overall factor graph

In Section 2 we show that f(y |θ) is a function of the quan-

tities H�(θ) ∈ R
2×2,

←−
WS�

(σ2
� ) ∈ R

2×2, and ←−mS�
(y(�)) ∈ R

for � = 1, . . . , L. The complexity for computing
←−
WS�

and
←−mS�

is linear in K and for fixed H�,
←−
WS�

, ←−mS�
the complex-

ity for computing this function is linear in L. Note that
←−
WS�

and ←−mS�
do not depend on θ and form a sufficient statistic.

In Section 3 we show how this sufficient statistic simplifies in

restricted settings and we show a connection with the discrete

Fourier transform (DFT). In Section 4 an iterative algorithm

for approximating the ML estimate of the noise variances in

each signal is given. Finally, in Section 5 we formulate an it-

erative algorithm to compute the likelihood function and LLR

of several superposed waves.

2. COMPUTING LIKELIHOODS WITH FACTOR
GRAPHS

2.1. State-Space Model

For each signal Y (�) we formulate a second-order linear state-

space model with state vector Xk as

X
(�)
k = AX

(�)
k+1 , (6)

Y
(�)
k = C X

(�)
k + Z

(�)
k , (7)

where A is a rotation matrix

A � rotm(−Ω) , (8)

rotmα �
(
cosα − sinα
sinα cosα

)
, (9)

and C � (1, 0). The corresponding (Forney) factor graph is

depicted in Fig. 1. Note that the time progression in Figs. 1

and 3 is from right to left. We use the abbreviation S� � X
(�)
K

for the final system state.

2.2. Glue Factor

Without loss of generality we can assume that θ contains the

overall amplitude ρ0 �= 0 and overall phase φ0 of an unknown

reference sinusoid ρ0 cos(Ωk + φ0). By letting

u(θ) � ρ0

(
cos(ΩK + φ0)
sin(ΩK + φ0)

)
(10)

be the state of this reference sinusoid at time K we can ex-

press the coupling between the signals as

S� = H�(θ)u(θ) , (11)

where H�(θ) � ρ� rotm(φ�), ρ� � α�/ρ0, and φ� � ψ�−φ0.

Both H�(θ) and u(θ) depend on the parameters θ via the

mapping Γ in (2). In our toy example we have H1 = I2 and

H2 = β I2, where I2 denotes the 2× 2 identity matrix.

We define a glue factor (Fig. 2)

gθ(s1, . . . , sL) =
L∏

�=1

δ
(
s� −H�(θ)u(θ)

)
, (12)

modeling the relations (11) as constraints, where δ(·) denotes

the Dirac delta. (See [5] for the concept of a glue factor.)

2.3. Likelihood Function and LLR

The overall factor graph in Fig. 3 consists of L state-space

models (Fig. 1) connected by the glue factor (Fig. 2). This

factor graph is tree-shaped and represents the probability den-

sity function

f(y, x|θ) = f
(
y, x

∣∣u(θ), H(θ)
)
, (13)

with X � {X(�)
k }�=1,...,L,k=1,...,K and H(θ) �

(
H1(θ)

T, . . . ,

H�(θ)
T
)T

.

Instead of using the brute force calculation (5), we use

sum-product message passing [4] in the factor graph to com-

pute the likelihood function. We use arrows to distinguish

between forward messages (−→· ) in the same direction as the

edge and backward messages (←−· ) in the opposite direction.

By marginalization and due to the definition of the sum-

product rule we can write

f(y |θ) =
∫

f(y, x|θ) dx = ←−μU (u(θ)) . (14)
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Since the state-space models (Fig. 1) do not depend on θ, we

can compute the messages ←−μS�
without specifying θ. The

likelihood (14) is then calculated from ←−μS�
and θ. It immedi-

ately follows that←−μS�
for � = 1, . . . , L is a sufficient statistic.

All messages in the factor graph at hand are (potentially

scaled and degenerate) multivariate Gaussian probability den-

sity functions. In this paper we prefer to write a message (e.g.

for an edge X in forward direction) in the form

−→μX(x) � −→γX e−xT−→
WXx/2+xT−→

WX
−→mX , (15)

where
−→
VX =

−→
W−1

X is the covariance matrix (if it exists), −→mX

is the mean vector and the scale factor is defined as

−→γX � −→μX(0) . (16)

The maximization in (3) can be done by first maximizing

over u(θ). Since for Gaussian messages max-product mes-

sage passing coincides with sum-product message passing the

ML estimate of U(θ) is û = ←−mU . We set u(θ) = û in (14) and

get the partially maximized likelihood function from message

update rules for Gaussian messages [4] as

ln f
(
y
∣∣u(θ) = û,H(θ)

)
=

1

2
←−mT

U

←−
WU
←−mU + ln←−γU , (17)

where

←−
WU =

L∑
�=1

H�(θ)
T←−WS�

H�(θ) , (18)

←−
WU
←−mU =

L∑
�=1

H�(θ)
T←−WS�

←−mS�
, (19)

ln←−γU =
L∑

�=1

ln←−γS�
. (20)

The remaining maximization over H�(θ) is in general non-

convex and depends largely on the mapping Γ. We do not

treated it here.

For the noise hypothesis H0 we constrain X to be zero by

setting u = 0 in (12). From (14) and (16) we get

ln f(y |H0) = ln←−γU , (21)

so that the partially maximized LLR is

LLR(θ) � ln
f(y |u(θ) = û,H(θ))

f(y |H0)
=

1

2
←−mT

U

←−
WU
←−mU . (22)

Note that (20) does not depend on θ and therefore can

be neglected when finding ML estimates θ̂. The sufficient

statistic thus consists of
{
←−mS�

,
←−
WS�

}
�=1,...,L

.

It is easy to generalize the state-space models to non-

uniform sampling. For this we substitute A in (6) by time-

varying matrices A
(�)
k � rotm

(
(t

(�)
k−1 − t

(�)
k )ω

)
, where ω is

the continuous time frequency and t
(�)
k are time stamps of

y
(�)
k . In the same fashion we can easily accommodate time

varying noise variances. The likelihood function and the LLR

can still be computed by message passing as in (17) and (22).

3. CONNECTION WITH THE DFT

In the case of uniform sampling as assumed in (1), the follow-

ing analytic solution for the messages←−μS�
can be proven.

←−
WS�

=
K

2σ2
�

I2 +
sin(ΩK)

2σ2
� sinΩ

rotm(Ω)R , (23)

←−
WS�

←−mS�
=

1

σ2
�

R
K−1∑
k=0

y
(�)
k

(
cos(kΩ)
sin(kΩ)

)
, (24)

where R � rotm(ΩK)
(
1 0
0 −1

)
. When viewing the sum

in (24) as a function of Ω we recognize the real and imagi-

nary parts of the finite-length discrete-time Fourier transform

of
(
y
(�)
0 , . . . , y

(�)
K−1

)
.

If we further restrict the frequency Ω to be Ωn � 2πn/K
for n = 0, . . . ,K − 1, then R =

(
1 0
0 −1

)
and the expressions

above simplify to

←−
WS�

=
K

2σ2
�

I2 , (25)

←−mS�
=

2

K

K−1∑
k=0

y
(�)
k

(
cos(2πkn/K)
− sin(2πkn/K)

)
. (26)

The latter consists of the real and the imaginary parts of the

DFT of
(
y
(�)
0 , . . . , y

(�)
K−1

)
, scaled by 2/K. If, in addition, the

noise variances are the same in all signals, i.e., if σ2
� = σ2 for

� = 1, . . . , L, then (22) simplifies to

LLRn(θ) =
y̆Tn H(θ)H(θ)T y̆n

Kσ2
∑L

�=1 ρ
2
�

, (27)

where y̆n � K
2

(
←−mT

S1
, . . . ,←−mT

SL

)T
contains the n’th compo-

nent of the DFTs of the signals. Equation (27) is a standard

beam-forming result. (See e.g. [6].)

4. NOISE VARIANCE ESTIMATION

In this section we consider the case where the noise variances

η �
(
σ2
1 , . . . , σ

2
L

)
are not given a-priori but are estimated in

an ML sense for both the “signal present” (H1) and the “noise

present” (H0) hypothesis.

The joint maximization for H1 over (θ, η) is non-convex.

We propose to use cyclic maximization [7] by alternating

θ̂ = argmax
θ

f
(
y
∣∣θ, η̂) , (28)

η̂ = argmax
η

f
(
y
∣∣θ̂, η) . (29)

Since the likelihood in every iteration cannot decrease, cyclic

maximization algorithms are guaranteed to converge.

The maximization (28) is the same as (3) and hence the

procedure in Section 2 applies. To start the algorithm we pro-

pose an initial estimate η̂ based on assuming that the signals
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are decoupled, i.e., the glue factor (12) is replaced by

gθ(s1, . . . , sL) =

L∏
�=1

δ(s� −←−ms�) . (30)

With (30), these initial ML noise variance estimates are

σ̂2
� =

1

K

K−1∑
k=0

(
y
(�)
k − CAK−k←−mS�

)2

. (31)

Once we have an estimate θ̂ we can calculate −→mS�
by apply θ̂

in the glue factor (12) and get the coupled ML noise variance

estimates as

σ̂2
� =

1

K

K−1∑
k=0

(
y
(�)
k − CAK−k−→mS�

)2

. (32)

If the signals are long we might want to avoid the direct

computation of σ̂2
� . We can approximate (31) and (32) by

σ̂2
� ≈ ζ2� −←−mT

S�

←−mS�
/2 , (33)

σ̂2
� ≈ ζ2� +−→mT

S�

−→mS�
/2−−→mT

S�

←−mS�
(34)

respectively, where ζ2� � 1
K

∑K−1
k=0

(
y
(�)
k

)2
are the signal

powers. Using these approximations, the only input to the

algorithm is {←−mS�
,
←−
WS�

, ζ2� }�=1,...,L. It can be shown that
←−mS�

does not depend on σ2
� and

←−
WS�

depends linearly on σ2
� .

Under the noise hypothesis H0 the ML estimate of the

noise variances are η̂(0) � (ζ21 , . . . , ζ
2
L). The generalized

LLR can easily be calculated from (5) as [3]

ln
f
(
y
∣∣θ̂, η̂,H1

)
f
(
y
∣∣η̂(0),H0

) =
K

2

L∑
�=1

ln
ζ2�
σ̂2
�

. (35)

5. EXTENSION TO WAVE SUPERPOSITION

Assume that we observe a linear superposition of M waves

ξ(m) with same frequency Ω, parameters θm, and mappings

Γm : θm �→
((

α
(m)
1 , ψ

(m)
1

)
, . . . ,

(
α
(m)
L , ψ

(m)
L

))
for m =

1, . . . ,M . Our signal model now is

Y
(�)
k =

M∑
m=1

(
α
(m)
� cos

(
Ωk + ψ

(m)
�

))
+ Z

(�)
k . (36)

We collect the parameters in a vector θ � (θ1, . . . , θM ). It is

straight forward to model all waves simultaneously by using

extended matrices H̃�(θ) �
(
H�(θ1), . . . , H�(θM )

)
and state

vectors ũ(θ) �
(
u(θ1)

T, . . . , u(θM )T
)T

in (11) and (12).

However, the space over which to maximize in (17) increases

approximately M fold.

As an alternative we propose an iterative algorithm based

on cyclic maximization [7]. Assume that we have an estimate

θ̂. We pick some m ∈ {1, . . . ,M} and update the estimate of

θm while fixing {θj = θ̂j}j∈{1,...,M}\{m}. This leads to the

following glue factor

gθm(s1, . . . , sL) =
L∏

�=1

δ
(
s� − ŝ �m� −H�(θm)u(θm)

)
, (37)

where ŝ �m� �
∑

j∈{1,...,M}\{m} H�(θ̂j)u(θ̂j) is the estimated

state due to all the waves except for the m-th. The corre-

sponding θ̂m can again be found by maximizing (17) where
←−μU is calculated using the glue factor (37).

To apply this algorithm we propose the following greedy-

type procedure. Initially, set M = 1 and use the glue fac-

tor (12) to find θ̂1. Then repeatedly do the following. Increase

M , use the glue factor (37) with m = M to find θ̂M , and iter-

ate finding θ̂m for m ∈ {1, . . . ,M} until convergence. This

algorithm is applied successfully in [1].

6. CONCLUSION

We have used a factor graph to derive a sufficient statistic

(in simple cases this is the DFT) for the ML estimation of

wave parameters. The sufficient statistic can be used to devise

iterative algorithms for the estimation of superposed waves

and of the noise variances.

7. REFERENCES
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