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ABSTRACT

Physical wave fields are often described by means of a vector
field. Advances in sensor technology enable us to collect an
increasing number of measurement at the same location (e.g.
direction, polarization, translation, and rotation). One ques-
tion arising naturally is how to properly process such large
and diverse information, possibly from sensors of different
kinds. In this paper we propose a technique for the analysis
of vector wave fields and show an application to the seismic
wave field. The contributions of this paper are the following:
i) We provide a framework to perform maximum likelihood
parameter estimation of any wave type, modeling jointly all
the measurements and parameters; ii) In the same framework,
we address wave superposition by gradually decomposing the
wave field; iii) We also propose an iterative algorithm for
noise variance estimation.

Index Terms— Array signal processing, factor graph,
seismic waves.

1. INTRODUCTION AND SYSTEM MODEL

In this paper, we propose a technique for the analysis of vector
wave fields. Our primary goal is the estimation of wave field
parameters based on discrete-time observations from a sensor
array. In particular, we are concerned with sensors measuring
vector quantities such as direction, polarization, translation,
and rotation. In practical applications several waves may be
simultaneously present. Our further goal is to decompose the
wave field by separating the contributions of different waves.

In the analysis of physical wave fields we are typically
interested in studying vector fields of the formu(p, t) : R4 →
R

C . The quantity u ∈ R
C depends on the position p ∈ R

3,
time t, and wave field parameters θ. The value of C depends
on the sensor we use to measure the wave field. The wave
field is measured by means of an array of N sensors. We
call L = NC the overall number of channels. In presence
of multiple sources, M waves coexist at the same time in the
wave field. Assuming a linear medium, the superposition of
these waves is measured in each channel. We now restrict our
analysis to a monochromatic wave field with known angular
frequency ω. In this setting, we model the signal on each

channel as the sum of scaled and delayed copies of underlying
reference sinusoids

u(�)(p, t) =
M∑

m=1

ρ
(m)
� ρ

(m)
0 cos

(
ωt+ φ

(m)
� + φ

(m)
0

)
. (1)

With this signal model, them-th wave is parametrized by the
amplitudes and phases ηm � {ρ

(m)
� , φ

(m)
� }�=0,...,L. The m-

th reference sinusoid ρ(m)
0 cos(ωt+ φ

(m)
0 ) is defined by ρ(m)

0

and φ(m)
0 . However, our interest lies in the estimation of wave

field parameters θm governing the amplitudes and the phases
measured at the different sensors. The parameters η and θ

are related by means of a mapping Γ : θ → η. In general,
{ρ�, φ�}�=1,...,L can be influenced by different quantities such
as velocity and direction of propagation (i.e., by the wave vec-
tor), wave polarization, wave attenuation, sensor directional
gain, instrument response, and others.

Each signal is measured as

Y
(�)
k = u(�)(p, tk) + Z

(�)
k (2)

at times tk and is corrupted by Gaussian noise Z
(�)
k

iid
∼

N
(
0, σ2

�

)
.

2. SEISMIC WAVE FIELD

The seismic wave field (i.e., elastic waves propagating
through the earth) offers an interesting example since it
presents the simultaneous presence of functionally different
and completely decoupled wave types [1].

To measure seismic waves, we deploy an array of triaxial
(C = 3) seismometers on the surface of the earth1. Each
sensor measures the ground velocity along the direction of
the axes of the coordinate system x, y, and z. For the sake
of simplicity, we provide wave equations of the displacement
field u, despite the actual measurement is the velocity field
∂u
∂t . The displacement can be described by the vector field

u(p, t) � (ux(p, t), uy(p, t), uz(p, t)) : R
4 → R

3 .

1We restrict our interest to small aperture arrays and work with a flat
earth model. We use a three-dimensional, right-handed Cartesian coordinate
system with the z axis pointing upward. The azimuth ψ is measured coun-
terclockwise from the x axis.
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In this paper, we study waves propagating near the surface
of the earth and having a direction of propagation lying on
the horizontal plane z = 0. The wave field is composed of
the superposition of several Rayleigh and Love waves. The
wave equations we describe hereafter are valid for z = 0 and
for plane wave fronts. Rayleigh waves exhibit an elliptical
particle motion confined in the vertical plane perpendicular to
the earth’s surface and defined by the direction of propagation
of the wave. The particle displacement generated by a single
Rayleigh wave at position and time (p, t) is

ux(p, t) = α sin ξ cosψ cos(ωt− κTp+ ϕ)

uy(p, t) = α sin ξ sinψ cos(ωt− κTp+ ϕ) (3)

uz(p, t) = α cos ξ cos(ωt− κTp+
π

2
+ ϕ) .

The direction of propagation of a wave is given by the wave
vector κ � κ (cosψ, sinψ, 0)

T, whose magnitude κ is the
wavenumber. The quantity tan ξ is called ellipticity of the
Rayleigh wave and determines the eccentricity and the sense
of rotation of the particle motion.

Love waves exhibit a particle motion confined on the hor-
izontal plane, the particle oscillates transversely with respect
to the direction of propagation. The particle displacement
generated by a single Love wave is

ux(p, t) = −α sinψ cos(ωt− κTp+ ϕ)

uy(p, t) = α cosψ cos(ωt− κTp+ ϕ) (4)

uz(p, t) = 0 .

With these wave equations in mind, we can now give an
explicit expression for the mapping2. Let pn be the known
position of the n-th sensor. The mapping Γ(R) : θ(R) → η,
with θ(R)

� (α, ϕ, κ, ψ, ξ), specialized to the Rayleigh wave,
is

(ρ0, φ0) = (α, ϕ)(
ρ(n,1), φ(n,1)

)
=

(
sin ξ cosψ,−κTpn

)
(
ρ(n,2), φ(n,2)

)
=

(
sin ξ sinψ,−κTpn

)
(
ρ(n,3), φ(n,3)

)
=

(
cos ξ,−κTpn +

π

2

)

for n = 1, . . . , N . Analogously, for a Love wave we define
the mapping Γ(L) : θ(L) → η, with θ(L)

� (α, ϕ, κ, ψ) as

(ρ0, φ0) = (α, ϕ)(
ρ(n,1), φ(n,1)

)
=

(
− sinψ,−κTpn

)
(
ρ(n,2), φ(n,2)

)
=

(
cosψ,−κTpn

)
(
ρ(n,3), φ(n,3)

)
= (0, 0) .

2We use (n, c) to refer to the c-th component of the n-th sensor instead
of (�) for the �-th channel. The mapping between (n, c) and (�) is bijective.

3. PROPOSED TECHNIQUE

3.1. Factor Graph

The probability density function of the observations y is

p(y |η) =
L∏

�=1

K∏
k=1

1√
2πσ2

�

e
−
(
y
(�)
k

−u
(�)
k

)2
/2σ2

� , (5)

where we rely onK discrete-time observations for each chan-
nel and define y � {y

(�)
k }k=1,...,K

�=1,...L and u(�)
k � u(�)(p�, tk).

Instead of computing (5), we model it by means of a factor
graph [2]. For every signal Y (�)

k , we consider a second-order

state space model with stateX(�)
k ∈ R

2

X
(�)
k−1 = AkX

(�)
k

Y
(�)
k = CX

(�)
k + Z

(�)
k ,

whereAk � rotm(ω(tk−1 − tk)) is a clockwise rotation ma-

trix rotm(β) �
(

cos β − sin β
sin β cos β

)
, and the measurement matrix

C � (0,−ω) accounts for the derivative ∂u
∂t . The correspond-

ing factor graph is depicted in Fig. 1(a).
Using a glue factor, we constrain the final states of every

channel with the following L equations

X
(�)
K =

M∑
m=1

H
(m)
� um =

M∑
m=1

S
(m)
� , (6)

where H(m)
� � ρ

(m)
� rotm(φ

(m)
� ) are the constraint matrices,

S
(m)
� � H

(m)
� um is the contribution on the 
-th channel of

the m-th wave, and the state vector of the m-th reference si-
nusoid is um � ρ

(m)
0 (cos(ωtK +φ

(m)
0 ), sin(ωtK +φ

(m)
0 ))T .

The corresponding factor graph is shown in Fig. 1(b), where
S

�m
� represents the contribution on the 
-th channel of all but

them-th wave. The overall graph is shown in Fig. 1(c).
Using the sum-product algorithm on the factor graph we

can compute the likelihood function p(y |η). We use Gaus-
sian messages parametrized by mean vector, covariance ma-
trix, and scale factor. We provide a detailed description in [3].

3.2. Parameter Estimation

We now focus on the estimation of wave field parameters θ, in
the case of a single wave (M = 1) and known noise variance.

We introduce the set G of all the parameter mappings of
interest. The maximum likelihood (ML) estimate of wave
field parameter is given by

(Γ̂, θ̂) ∈ argmax
Γ∈G,θ∈domΓ

p
(
y
∣∣Γ(θ)) . (7)

This maximization allows us to find the most likely wave type
with the most likely parameters.
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Fig. 1. Building blocks and overall view of the factor graph
of (5).

3.3. Wave Field Decomposition

WhenM > 1, Eq. 6 captures the presence of multiple waves.
However, because of the larger number wave field parame-
ters, a joint maximization of the likelihood function might be
impractical.

We propose to gradually increase the number of waves
modeled by the graph and perform smaller maximizations on
the wave field parameters of each wave separately. In prac-

tice, once we insert an estimate ŝ
�m
� of Ŝ

�m

� , we perform the
maximization overθm as in (7). Each maximization increases
the likelihood and convergence is guaranteed.

3.4. Noise Variance Estimation

The ML noise variance estimate is given by

σ̂2
� =

1

K

K∑
k=1

(
y
(�)
k −C rotm (ω(tk − tK))−→m

X
(�)
K

)2

,

with −→m
X

(�)
K

=
∑M

m=1 H
(m)
�

−→mUm
. Since the messages −→mUm

depend on σ̂2
� , this leads to an iterative algorithm where noise

variance and messages are estimated iteratively.

4. NUMERICAL EXAMPLES

In the first example, we generate a synthetic wave field com-
posed of two Rayleigh and two Love waves. The number of
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Fig. 2. Estimated amplitude at different iterations. The graph
accounts for an additional wave at iteration 1, 6, 10, and 15.

wavesM = 4 is known. Waves are monochromatic at known
frequency of 1 Hz. We use an array of 14 triaxial sensors,
500 samples, and 5 seconds of observation. Measurements
are corrupted by additive white Gaussian noise, with different
variance in each channel. We look for both Rayleigh and Love
waves, i.e., G � {Γ(R),Γ(L)}. True wave field parameters are

θ
(R)
1 = (0.9, 0, 0.03, π4 ,

π
4 )

T, θ(R)
2 = (0.8, π

4 , 0.03,
π
2 ,

π
4 )

T,

θ
(L)
3 = (0.7, π3 , 0.04,−

π
4 )

T, and θ
(L)
4 = (0.2, π, 0.04, π)T.

Noise variance and wave field parameters are unknown to the
algorithm.

Fig. 2 shows how the estimates of the amplitudes α con-
verge toward their true values (dotted lines) after a sufficient
number of iterations. The factor graph is enlarged to account
for additional waves at iterations 6, 10, and 15 as the like-
lihood (not shown) converges to a stable value. Similarly,
Fig. 3 shows the the estimates of noise variance σ2

� . Sudden
decrease in estimated variance in the graph correspond to the
inclusion of an additional wave in the graph.

Fig. 4 depicts log p
(
y
∣∣Γ(L)(θ(L))

)
, as a function of

wavenumber κ and azimuth ψ in polar coordinates (κ, ψ).
In Fig. 4(a) it is possible to see at ψ3 = −π

4 one stronger

peak associated with the wave parametrized by θ
(L)
3 and no

other strong peaks are visible. At iteration 14, only one Love
wave remains in the wave field (the wave parametrized by
θ
(L)
4 ) and the associated peak, located at ψ4 = π, is now

clearly visible, as shown in Fig. 4(b). At the last iteration, no
more waves remain in the the residual wave field, Fig. 4(c).

We now use a more sophisticated synthetic wave field
developed in the SESAME project [4, 5]. This synthetic
dataset captures the complexity of the seismic wave field,
accounting for the simultaneous presence of several seismic
sources, emitting both short burst of energy and longer har-
monic excitations. It is a wave field of ambient vibrations,
where the wave field is dominated by surface waves (i.e.,
Rayleigh and Love waves) but also other waves are present
(e.g., bodywaves and standingwaves). We use an earth model
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Fig. 3. Estimated noise variance at different iterations. Only
six channels are shown.
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Fig. 4. Log-likelihood function of a Love wave.

of a layer with low seismic velocities over a half-space with
higher velocities. We use 38 sensors and solely 10 seconds
of recording. Different frequencies are processed indepen-
dently. Of practical interest is the phase velocity dispersion
of surface waves [1].

We define G � {Γ(R)} and initially model a single
Rayleigh wave, i.e., M = 1. In Fig. 5, the estimates of
the wavenumbers κ (black dots) suggest the Rayleigh wave
dispersion curves. For comparison, the theoretical dispersion
curves are depicted by lines. In Fig. 6, the number of waves
modeled is increased to M = 3. It is shown that increasing
the number of waves modeled by the factor graph, allows to
better retrieve the fundamental and the higher modes.

5. CONCLUSIONS

We have developed a technique to perform ML estimation
of wave field parameter of any wave type. The technique
accounts for different noise variance on each channel, by
properly merging the information from sensors with dif-
ferent noise level. In the same framework, we address the
superposition of multiple waves and show that wave field
decomposition enables to detect weaker waves. We also pro-
pose an iterative algorithm for noise variance estimation. The
technique accounts for arbitrary sensor positions and arbitrary
sampling instants.

We show numerical examples on monochromatic signals
and on a well-established dataset of the seismic wave field.
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Fig. 5. Rayleigh wave dispersion curve,M = 1.
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Fig. 6. Rayleigh wave dispersion curve,M = 3.
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