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Abstract—Factor graphs of statistical models can be aug-
mented by a glue factor that expresses some additional (initial,
final, or otherwise “local”) condition. That applies, in partic-
ular, to (otherwise time-invariant) linear Gaussian state space
models, which are thus generalized to pulse-like models that are
localized anywhere in time. The model likelihood can then be
computed by (forward-backward or forward-only) sum-product
message passing, which leads to the concept of a likelihood filter.
We propose to build (forward-only) likelihood filters from a
bank of second-order linear systems. We also observe that such
likelihood filters can be cascaded into a new sort of neural
network that works naturally with multichannel time signals at
multiple time scales.

I. INTRODUCTION

In this paper, we pursue further two notions that were intro-
duced in [1], viz., glue factors in factor graphs and likelihood
filters. While these concepts are independent, it turns out that
glue factors are particularly useful for likelihood filters. The
two main new contributions of this paper are the following:

1) The decomposition of a likelihood filter into a bank of
second-order filters—essentially a discrete-time Fourier
transform with an exponential window—and a glue
factor.

2) The observation that likelihood filters can be cascaded
into a new kind of neural network that works naturally
with multichannel time signals at multiple time scales.

The paper is structured as follows. The necessary back-
ground in factor graphs is briefly summarized in Section II.
Glue factors and their use for likelihood computations are
discussed in Section III. Beginning with Section IV, we
focus on online, or forward-only, likelihood filtering. The
decomposition of such a likelihood filter into a bank of
second-order components/filters is described in Section V,
and hierarchical networks of likelihood filters are proposed
in Section VI.

II. STATE SPACE MODELS AND FACTOR GRAPH
NOTATION

Throughout the paper, we will be concerned with statistical
models of signals (i.e., time series) with a state space
representation, i.e., variations of models of the form

p(x0, . . . , xn, y1, . . . , yn) = g0(x0)
n∏

k=1

gk(xk−1, yk, xk)

(1)
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Fig. 1. Forney-style factor graph of (1) for n = 3.
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Fig. 2. Sum-product messages.

where Y1, . . . , Yn are the observable variables, where
X0, . . . , Xn are auxiliary variables (state variables), where
p(.) is a probability mass function or a probability density,
and where g0, g1, . . . , gn are real-valued functions. Clearly,
a probability law of the form (1) is a hidden Markov model.
We will be particulary interested in linear Gaussian models
of this form.

We will use the notation of Forney-style factor graphs as in
[2], where nodes/boxes represent factors and edges represent
variables. For example, the (Forney-style) factor graph of (1)
is shown in Fig. 1.

A sum-product message in a factor graph without cycles
is a quantity such as (see Fig. 2)

−→µX2(x2) =
∑

variables inside box

∏
factors inside box

(2)

=
∑

x0,x1,y2

g0(x0)g1(x0, y1, x1)g2(x1, y2, x2), (3)

which may be viewed as the result of closing the dashed
box in Fig. 2 by summing (or integrating) over its internal
variables. Such messages can be computed recursively as,
e.g.,

−→µX2(x2) =
∑

x1, y2

−→µX1(x1)g2(x1, y2, x2), (4)

which is known as sum-product message passing or belief
propagation.
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Fig. 3. Time invariant factor graph with a glue factor g.
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Fig. 4. Factor graph with a glue factor at a model switch.
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Fig. 5. Computation of likelihoods in Fig. 4 according to (5).
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Fig. 6. Glue factor across two otherwise independent models.

Variables whose value is known (such as Y1 = y1 in Fig. 2,
as indicated by the small black square) are, of course, not
summed over in (2)–(4).

In many applications of sum-product message passing,
scale factors in messages may be ignored. In this paper,
however, scale factors cannot be ignored.

III. GLUE FACTORS AND LIKELIHOOD COMPUTATION

Consider the factor graph in Fig. 3, where all factors except
g are identical functions; except for the factor g, we thus
have a time invariant model. The factor g may be used, e.g.,
to express some constraint on the state Xk = X ′k, or to
allow some discontinuity at time k by allowing Xk 6= X ′k.
For linear Gaussian models, g may express a jump in the
state space, in which case the impulse response of the system
will appear in Yk+1, Yk+2, . . . . We will refer to g as a glue
factor, since it specifies how the states Xk and X ′k are glued
together.

More generally, in the factor graph of Fig. 4, the glue factor
g at time k specifies whatever conditions apply for a switch
from some model A for Y1, . . . , Yk to some model B for

Yk+1, . . . , Yn. The likelihood of any fixed signal/sequence
y1, . . . , yk, . . . , yn can then be written as

p(y1, . . . , yn|Hk) =
∑

xk,x′
k

−→µXk
(xk)g(xk, x

′
k)←−µX′

k
(x′k),

(5)
where Hk is the hypothesis that the switch occurs at time
k, −→µXk

is the forward sum-product message along the edge
Xk, and ←−µXk

is the backward sum-product message along
the edge X ′k as illustrated in Fig. 5.

The likelihood (5) can thus be efficiently computed for
all values of k simultaneously: the messages −→µXk

are ob-
tained by forward sum-product message passing in model A,
the messages ←−µX′

k
are obtained by backward sum-product

message passing in model B, and from these messages, (5)
can be computed for all k. This computation of (5) for
k = 1, 2, . . . , n is a generic example of (offline, forward-
backward) likelihood filtering.

For large n, the likelihood (5) is normally a very small
number, and even log p(y1, . . . , yn|Hk) typically decreases
linearly with n. Practical implementations thus need to
rescale the sum-product messages and keep track of the scale
factors in logarithmic form.

It often happens that the factor graph represents not
p(y1, . . . , yn|Hk) but ξp(y1, . . . , yn|Hk), where ξ ∈ R is
an unknown positive scale factor. In this case, ξ can itself
be computed by sum-product message passing in Fig. 4
according to

ξ =
∑

xk,x′
k

−→µXk
(xk)g(xk, x

′
k)←−µX′

k
(x′k). (6)

The right-hand side of (6) looks like the right-hand side of
(5), but the former refers to Fig. 4, where Y1, . . . , Yn are
variables to be summed over, while the latter refers to Fig. 5,
where Y1 = y1, . . . , Yn = yn are known.

Finally, we note that glue factors can also express con-
straints across (otherwise independent) models of a multi-
channel signal, as illustrated in Fig. 6. This situation may
occur if some event or waveform is to be detected via several
independent sensors, as, e.g., in [5], [6].

IV. ON-LINE (FORWARD-ONLY) LIKELIHOOD FILTERING

We now consider problems whose nature is illustrated by
questions of the following type:
• Is my phone ringing?
• Did I just hear “stop”?

Each of these questions refers to a condition that in-
volves some unspecified duration. Nonetheless, both ques-
tions strictly refer to the present time; we do not care for
how long the respective condition has been satisfied.

In mathematical terms, we are interested in defining and
computing quantities of the form

p(. . . , yk−1, yk |H) (7)

and
p(H | . . . , yk−1, yk) (8)
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Fig. 7. Forward-only likelihood filtering.
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Fig. 8. A pulse that ends at time k.

for k = 1, 2, 3, . . ., especially for k � 1 when the effect
of any initial conditions has disappeared. Here H means
some hypothesis or statistical model and p(.|H) denotes
the corresponding probability mass function (or probability
density).

We begin by assuming a state space representation as in
Fig. 7 (i.e., a hidden Markov model), where all factors are
assumed to be identical functions (i.e., we have a time in-
variant model) except for the glue factor gH , which expresses
some terminating condition.

We are particularly interested in time invariant linear
Gaussian models, where the glue factor allows us to model
pulses as in Fig. 8 that end at time k. (Note that a continuous-
time linear system with an impulse response as in Fig. 8
has its poles outside the unit circle, i.e., its forward impulse
response is unstable. This is no problem at all, since we are
interested in the backward impulse response, which is stable.)
While Fig. 8 shows a clean deterministic pulse, the linear
Gaussian case includes not only such pulses with additive
Gaussian noise but also stochastic versions of the pulse shape
itself.

In the model of Fig. 7, we clearly have

p(y1, . . . , yk |H) =
∑
xk

−→µXk
(xk)gH(xk), (9)

which can be computed for k = 1, 2, 3, . . . by forward sum-
product message passing as illustrated in Fig. 7.

The logarithm of (9) typically decreases linearly with k.
It may not be immediately obvious what this quantity can
be compared with, and how something like (8) might be
obtained from (9). A natural way to deal with this difficulty
is to use a reference model/hypothesis H0 that agrees with H
for sufficiently old data, i.e., the sum-product messages −→µX`

in the factor graphs of H and H0, respectively, coincide for
`� k. In this case, the log-likelihood ratio

Lk
4= log

p(. . . , yk−1, yk |H)
p(. . . , yk−1, yk |H0)

(10)

is normally a finite number. In the linear Gaussian case (if
H is a pulse as in Fig. 8 that decays to zero towards the
past), such a reference model H0 may be obtained by using
the same time invariant linear Gaussian model as H , but
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Fig. 9. Superposition of second-order models (damped sinusoids) in
additive Gaussian noise. The unlabeled boxes represent the constraints (13)
and (14); the boxes labeled N are Gaussian factors.

terminating it in state Xk = 0, which can be expressed by
an appropriate glue factor gH0 .

Finally, a posterior probabability (8) can be defined by the
(admittedly wild) assumption

p(H) + p(H0) = 1, (11)

which implies

p(H | . . . , yk−1, yk) =
1

1 + p(H0)
p(H) e

−Lk

(12)

V. DECOMPOSITION INTO SECOND-ORDER SYSTEMS

We now focus on linear Gaussian models that can be de-
composed into second-order models of the following special
form. The state Xk ∈ R2 of such a second-order model
evolves deterministically according to

Xk = ρ

(
cos Ω − sin Ω
sin Ω cos Ω

)
Xk−1 (13)

and produces the scalar output signal

Ỹk = (1, 0)Xk. (14)

Clearly, these output signals have the form

Ỹk = aρk cos(Ωk + ϕ) (15)

for arbitrary amplitude a and phase ϕ (which might be fixed
by a glue factor at the end). We will assume ρ > 1 (but
typically ρ ≈ 1), which makes the signals (15) decay towards
the past. (Alternatively, we could assume ρ = 1 and work
with a forgetting factor as in [1].)

We now proceed to the superposition of such signals
as shown in Fig. 9, where the unlabeled boxes represent
the constraints (13) and (14) of the individual second-order
systems. The observable output signal is the sum of the
output signals of the component systems plus additive white
Gaussian noise.

We will typically choose the frequencies Ω of the con-
stituent second-order systems to be equidistant. With a suit-
able choice of the frequency spacing, the resulting output
signals (15) will be approximately orthogonal (for ρ ≈ 1)
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Fig. 10. Factor graph of a likelihood filter comprising a bank of second-
order models/filters and a glue factor gH .

and yet allow to represent essentially any smooth pulse-like
signal (as in Fig. 8) by a suitable choice of amplitudes and
phases.

The glue factor gH in Fig. 9 can be used to fix a particular
combination of amplitudes and phases, which results in a
deterministic pulse. However, much more general glue factors
can be used, e.g., to fix only certain ratios of phases and
amplitudes, or to impose a Gaussian prior on the joint state
space.

It should be noted, however, that the factor graph of
Fig. 9 has cycles and is thus not amenable to forward-
only likelihood filtering as in Section IV. Noting, however,
that the constituent second-order systems are approximately
orthogonal (for suitable frequency spacing), it can be shown
that the forward sum-product messages are approximately
independent and can be computed as shown in Fig. 10, where
each constituent second-order system (with its own additive
noise) is fed directly with the observed signal.

The computation of the sum-product messages in Fig. 10
amounts essentially to a bank of second-order filters. More-
over, it can be shown that the mean vectors of the messages
form a discrete-time Fourier transform with exponential
window [4].

Clearly, the same sum-product messages (filter bank) can
be used for many different glue factors.

Finally, the architecture of Fig. 10 is easily extended to
multichannel signals, where each signal is fed into its own
filter bank and glue factors extend across multiple filter
banks.

VI. HIERARCHICAL PROBABILITY FILTER NETWORKS

The probability output signal (8) or (12) of a likelihood
filter can itself be analyzed by likelihood filtering. (The
probability signal (8) or (12), which is bounded between 0
and 1, is much better suited for this purpose than (7) or (10).)
We thus arrive at the architecture shown in Fig. 11, where a
multichannel signal is analyzed by a first set of likelihood
filters with cross-channel glue factors, which produce a
collection of probability signals, which in turn are analyzed
by a second set of likelihood filters with cross-channel glue
factors, and so on.
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Fig. 11. Probability filter network (block diagramm, not a factor graph).

Note that, in the actual implementation, the likelihood
filters on the same level may share the same set of filter
banks, i.e., one filter bank per signal may be sufficient.

Such a network of likelihood filters, or rather probability
filters, is naturally suited for analyzing signals at multiple
time scales. The intermediate probability signals may be
viewed as features that are used by the next level. The
computation of the output signals follows the same principles
as the computation of the feature signals at each level.

VII. CONCLUSION

We discussed glue factors and likelihood computations in
factor graphs of statistical state space models with emphasis
on the linear Gaussian case. In particular, we showed a
decomposition of a likelihood filter into a bank of second-
order models/filters and a glue factor. We finally arrived
at an architecture for a network of likelihood filters (or
rather probability filters) that is naturally suited for extracting
information at multiple time scales.

It is obvious that the present paper is only an outline. While
a wealth of pertinent details is given in [3] and [4], the subject
is still in its infancy.
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