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Abstract—Standard implementations of Kalman filters and
smoothers often suffer from numerical instability issues, due
to round-off errors, even for moderate-sized state space mod-
els. Recently, two inversion-free and computationally efficient
Kalman smoothers, an adapted version of the Modified-Bryson
Frasier smoother (MBF), mainly tailored to input estimation
and the Backward Information Filter Forward Marginal (BIFM)
smoother for state estimation and output interpolation were
presented. In this paper, we will first suggest improvements
to both the MBF and BIFM smoother implementations aimed
at improving computational efficiency and, using this improved
version of the BIFM smoother, we will elaborate on its usage in
sensor networks with spatially correlated noise. The main novelty
in this paper is the square-root version of the BIFM smoother,
which can be used in numerically critical smoothing problems,
as exemplified in a force estimation problem using a multi-mass
resonator model of an industrial milling machine.

I. INTRODUCTION

Standard implementations of Kalman filters and smoothers
are prone to numerical instability issues. These are caused by
round-off errors in finite precision arithmetic, especially on
embedded hardware. Numerical stability is a limiting factor
in estimation problems featuring large dynamic ranges of
the states or parameters [1], and in high dimensional state
space models [2]. Numerical instability frequently originates
in matrix inversions, e.g. the Rauch-Tung-Striebel (RTS)
smoother [3], requires an inversion of the state covari-
ance matrix at each time step. Therefore, we will elaborate
on two matrix-inversion-free Kalman smoothers: Firstly, on
the Modified-Bryson-Frazier (MBF) [4] and its extension
to input estimation [5] and secondly, on the recently pro-
posed Backward Information Filter Forward Marginal (BIFM)
smoother [5]. In section II-A we will propose improvements
to standard implementations of the MBF and BIFM smoother.
Further, we will show via numerical simulations, the superi-
ority of the BIFM smoother compared to standard Kalman
smoothers for state estimation problems in (large) sensor
networks featuring spatially correlated noise.

For poorly conditioned state space models, even these
improved implementations might run into numerical problems.
In these systems, numerical errors often manifest themselves
in loss of symmetry and more importantly loss of positive
semi-definiteness of covariance matrices [6]. We will present
two approaches to alleviate this problem: Firstly, Gaussian
square-root message passing and secondly, a specific state
space reparametrization for diagonalizing the state covariance
matrix. Both approaches are aimed at reducing the condition

number of the state covariance and precision matrix. The main
contributions of this paper are:

1) Tabulated square-root Gaussian message passing rules
for composition of both known and novel filters and
smoothers, in particular:

2) a square-root version of the BIFM smoother from [5],
3) a square-root version of the MBF input estimator [7].
4) State reparametrization for increased numerical stability

Two state estimation problems are used to illustrate the
superior numerical robustness of the BIFM and square-root
smoothers: An object tracking problem using a sensor network
with spatially correlated measurement noise, testifies to the
advantage of using Kalman smoothers based on information
filters, for (large scale) sensor networks. A force estimation
problem from noisy dynamometer readings, is used to show
the superior numerical robustness of the proposed square-root
smoothers.

A. Signal Model and Factor Graphs

A given (measured) discrete-time signal y = (y1, . . . , yN )
with yk ∈ Rd, will be modeled as the output of a linear state
space model (SSM):

Xk = AXk−1 +BUk−1 +Wk−1

Yk = CXk + Zk, (1)

with A ∈ Rn×n, Xk, Wk ∈ Rn, B ∈ Rm×n, C ∈ Rd×n. The
input signal U = (U0, . . . , UN−1) is a sequence of indepen-
dent Gaussian random variables, W = (W0, . . . ,WN−1) rep-
resents zero-mean Gaussian state noise and Z = (Z1, . . . , ZN )
zero-mean Gaussian measurement noise. Since the state tra-
jectory forms a Markov process, the joint density has the
following factorization:

p(y1:N , x0:N |u0:N−1) = p(x0)
∏N

i=1 p(yk|xk)p(xk|xk−1, uk−1) (2)

which can be represented using a factor graph [8] as shown
in Fig. 1.

In contrast to the classical minimum mean square error
(MMSE) optimization view on Kalman filtering, we will
interpret Kalman filtering and its variations as inference on
probabilistic graphical models, especially on factor graphs [8].
This interpretation and notation provides a unifying view on
different Kalman filter/smoother implementations as well as
on extensions of Kalman filtering to input estimation [9] and
parameter identification [10]. Tabulated message passing rules
as in [5], [8] can readily be used for composition of algorithms
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Fig. 1. Factor graph segment of the state space model. The whole factor
graph consists of many such sections, one for each time step.

ranging from state estimation, to output smoothing and input
estimation as shown in Section III-B.

B. Message Passing Notation

The (forward) filtering distribution p(xk|y1, ..., yk), e.g.
computed via the covariance Kalman filter, is parametrized
by the forward mean −→mXk

and the forward covariance matrix
−→
VXk

. The (backward) filtering distribution p(xk|yk, ..., yN ),
e.g. computed via the backward information filter, is
parametrized by the backward transformed mean

←−
ξXk

=
←−
WXk

←−mXk
and backward precision

←−
WXk

=
←−
V −1
Xk

. Following
[5], [8], right pointing arrows indicate dependence of the esti-
mates on present and past observations, whereas left pointing
arrows indicate dependence on present and future observations.
The smoothing distribution p(xk|y1, ..., yN ) is parametrized
via the mean mXk

and covariance VXk
(BIFM smoother) or

alternatively by the dual mean ξ̃Xk
and dual precision W̃Xk

(MBF smoother) [5].

C. Numerical Stability and Computational Complexity

The condition number, i.e. the ratio between the largest
and the smallest singular value of a matrix κ(V ) =
σmax(V )/σmin(V ) is a key quantity for expressing bounds on
numerical accuracy involving matrix inversions and multiplica-
tions [11]. Poorly conditioned covariance matrices often result
in numerical instability of Kalman smoothers [12]. To increase
numerical stability, a state transformation and square-root
message passing, both aimed at reducing the condition number
and enforcing symmetry and positive definiteness of covari-
ance and precision matrices, are presented in section II-C
and III respectively. Most modern CPUs and programming
languages have native support for floating point arithmetic,
hence computational efficiency of different Kalman smoothers
will be assessed in terms of FLOPS [13].

II. IMPLEMENTATIONS OF MBF AND BIFM SMOOTHERS

In this section we will show different methods to enhance
numerical stability and reduce computational requirements of
the MBF and BIFM smoother, especially in sensor networks
and large scale state space models.

A. Composite Blocks and Computational Efficiency

Note from the following simple example that different
implementations of mathematically equivalent expressions can
result in substantial gains in computational efficiency: Let
A ∈ Rn×n and v ∈ Rn, then the left-hand side and right-
hand side of (Av)vT = A(vvT) are mathematically equivalent,
however the left-hand side involves one matrix-vector O(n2)
and one outer product O(n2), compared to the right-hand
side, which involves one outer product O(n2) and one matrix-
matrix multiplication O(n3). Similarly, naive composition of
tabulated message update rules rarely yields the most efficient
and numerically stable implementation of the desired algo-
rithm. Therefore further algebraic manipulations should be
performed to reduce computational cost and increase numer-
ical robustness of the MBF and BIFM smoother. Combining
equations [(III.8), [5]] and [(V.6), [5]] of the standard MBF
smoother from [5] for propagating the dual precision matrix
W̃Xk

, through the A-node and observation block (equality-
and C-node) in Fig. 1 yields:

W̃Xk−1
= ATFT

k W̃Xk
FkA+ATCTGkCA, (3)

where Fk and Gk (cf. Table IV) are summary quantities ob-
tained in the Kalman filtering step. By introducing F a

k = FkA,
i.e. combining the multiplier- and equality-node, we can avoid
two matrix multiplications of n× n matrices, where n is the
dimension of the state. One matrix multiplication can be saved
in (3) and the other in the computation of:

F a
k = FkA = (I −

−→
VX−k

CTGkC)A. (4)

For the BIFM smoother (being dual to the MBF) introducing
the auxiliary variable F̃ a

k = ATF̃k allows combining the A-
node with the input-block, which results in the same compu-
tational savings as for the MBF smoother.

B. Efficient State Estimation in Sensor Networks

Straightforward application of the tabulated Gaussian mes-
sage passing rules in [5], leads to an inversion of a matrix
with row and column dimension equal to the dimension of
the output vector yk for the MBF and of the input vector uk
for the BIFM smoother. This matrix inversion is often the root
cause of numerical instability of Kalman smoothers for MIMO
systems. In presence of state noise, a standard implementation
of the BIFM would incur a matrix inversion of the size of the
state, thus losing one of its main selling points, namely being
matrix inversion-free.

1) Scalar updates: When measurement or state noise are
uncorrelated, i.e. their covariance matrix is diagonal, matrix
inversions for Kalman and information filters can be avoided
via sequential scalar updates (splitting the B and C matrix)
as in [14]. Figure 2 compares the computational requirements
of standard and efficient (composite blocks + scalar updates)
Kalman smoother implementations in terms of FLOPS for
n-th order single-input single-output (SISO) systems. Scalar
addition and multiplication are counted as 1 FLOP each. Due
to the vast number of different implementations for arithmetic
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Fig. 2. Required FLOPS with standard update equations (left) and with
proposed efficient update equations (right). The FLOP count for the BIFM
was done both with state noise (BIFM) and without state noise (BIFM0).

operations such as matrix inversions and multiplications, we
computed the FLOP count by resorting to standard textbook
implementations [15]:
• Inversion of an n × n matrix: 4/3n3 + 3/2n2 − 5/6n

FLOPS
• Multiplication of two n× n matrices: 2n3 − n2 FLOPS
• Multiplication n× n matrix with n× 1 vector: 2n2 − n

FLOPS
• Outer product of n× 1 vectors: n2 FLOPS
• Inner product of n× 1 vectors: 2n− 1 FLOPS
2) Spatially Correlated Measurement Noise: In sensor net-

works, the assumption that measurement noise is uncorrelated
might not hold and severely degrade estimation accuracy if
not taken into account. Different models for spatially corre-
lated sensor noise have been proposed, among which [16]
for wireless sensor networks on a 2D lattice. In this model
the spatial correlation of the measurement noise is assumed
to be a function of the distance between two sensors. The
covariance of the noise on sensors i and j (scalar Rij), decays
exponentially with the Euclidean distance between the sensors:

Rij = σ2
Z exp(−ρ||ri − rj ||2), (5)

where ρ indicates the coupling between the noise on the
different sensors, ri, rj ∈ R2 are the positions of sensor i
and j and σZ is a noise scaling factor.

We compared the performance of different Kalman
smoother implementations using (a slightly modified
version of) the state space model for target tracking
from [16]. A non-maneuvering target is modeled
by a continuous-time white noise acceleration
model, giving rise to the discrete-time system:
A = [0.8, 0,∆/10, 0; 0, 0.8, 0,∆/10; 0, 0, 0.8, 0; 0, 0, 0, 0.8],
B = 0. The state noise covariance was chosen as in [16]:
VW = τ [∆3/3, 0,∆2/2, 0; 0,∆3/3, 0,∆2/2; ∆2/2, 0,∆, 0; 0,∆2/2, 0,∆].

The first two states x1 and x2 denote the position and x3

and x4 the velocity of the target in 2D, whereas ∆, denotes
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Fig. 3. Maximal number of sensors for which the relative mean squared
estimation error is below 75% for the RTS, MBF and BIFM smoother as a
function of the noise factor σZ . The BIFM smother could handle without
failures the maximal number of 300 sensors set in the simulation.

the sampling time and is set equal to 0.1 and τ represents a
state noise scaling factor and was set to 1. The sensors are
randomly placed on a 50 by 50 lattice and the rows of the C
matrix are independently drawn from a multivariate standard
Normal distribution as in [16].

For each noise scaling factor level σZ in (5), the number
of sensors in the simulation was increased in steps of 2, until
the estimation algorithm failed in more than 25 out of 100
runs, or the preset upper bound of 300 sensors was reached.
The state estimation was considered as failed if the relative
mean squared error (||x −mX ||/||x||) was above 75%. This
loose bound was chosen, since when the smoothers failed,
they tended to diverge, resulting in NaNs for the mean and
covariance. Figure 3 shows the maximum number of sensors
for the RTS, MBF and BIFM smoother as a function of the
measurement noise scaling factor σZ . The superior numerical
stability of the BIFM smoother compared to both the MBF and
the RTS smoother for sensor networks with spatially correlated
noise is due to the usage of the information filter in the
BIFM filtering step. In the information filter, measurements
enter the state estimates additively (addition of transformed
means and precisions), which is a non critical operation
from a numerical point of view. Most of the RTS’ and the
MBF’s tracking failures can be attributed to the numerically
challenging measurement update equation in the (covariance)
Kalman filtering step.

C. State Transformation for Increasing Numerical Stability

Several methods to enhance numerical stability of Kalman
filter implementations have been proposed, such as symmetriz-
ing the covariance matrix via ((V +V T)/2) and the Joseph co-
variance update [14] to retain positive definiteness. Further ad
hoc methods aimed at avoiding poorly conditioned covariance
matrices include: rescaling the state and system matrices, the
addition of “stabilizing noise" and setting minimal thresholds
on the entries of the covariance matrices [14].

When using Kalman filters and smoothers for, e.g. input
estimation or output interpolation [9], the state parametrization
can be chosen freely. In [12] error propagation was shown to



be mitigated when the covariance matrix is close to diagonal.
Moreover, in [17], to enhance numerical stability of solvers for
the algebraic Riccati equation, scaling with an appropriately
chosen constant has been suggested. We extend this idea to
matrix scaling by proposing state transformations, based on
steady-state covariance and precision matrices computed with
numerically robust Riccati solvers. These transformations are
aimed at both reducing the condition number and keeping
the time-varying covariance and precision matrices close to
diagonal.

a) State Transformation for Kalman and Information
Filter: To reduce the condition number of the covariance
matrix and to keep its diagonal structure as close as possible,
we perform the eigenvalue decomposition of the steady-state
covariance matrix1:

−→
V∞X = QΛQT, (6)

with Q being the eigenbasis and Λ a diagonal matrix con-
taining the eigenvalues. Thereby we obtain the transformation
matrix T = Λ−

1
4QT (with x̄ = Tx), such that the covariance

matrix of the transformed state
−→
V X̄k

= T
−→
V Xk

TT ≈ Λ
1
2 is

close to diagonal and has a reduced condition number. For the
information filter the corresponding transformation matrix can
be obtained by decomposing the steady-state precision matrix
←−
W∞X instead of the steady-state covariance matrix. Since we
observe that for the RTS, MBF and BIFM smoother the
filtering part is the numerically most problematic one, using a
transformation targeting the filtering part is often sufficient.

b) Two-Filter Smoother: For the Two-Filter smoother
[4], [8] we suggest a new transformation, based on simulta-
neously diagonalizing both the forward covariance matrix and
backward precision. Given two symmetric and positive semi-
definite matrices A and B there always exists an invertible
matrix (cf. page 500 in [11]), such that TTAT is diagonal
and TTBT is the identity matrix. The algorithm from [11]
can readily be modified to find a transformation T , which
simultaneously diagonalizes the steady-state (forward) covari-
ance

−→
V∞X and the steady-state (backwards) precision

←−
W∞X by

balancing the diagonal elements. The state space model can
therefore be transformed into a basis in which both the (time-
varying) transformed forward covariance

−→
V X̄k

= T
−→
V Xk

TT

and backward precision
←−
W X̄k

= T−T
←−
WXk

T−1 are close to
diagonal, have balanced eigenvalues, and therefore a reduced
condition number.

III. GAUSSIAN SQUARE-ROOT MESSAGE PASSING

The covariance matrix VX and the precision matrix WX are
symmetric and positive (semi-) definite. Hence, they posses a
Cholesky decomposition VX = NT

XNX and WX = ST
XSX ,

where NX and SX are upper triangular matrices [11]. Instead
of propagating the covariance or the precision matrix through
the nodes of the factor graph in Fig. 1, square-root filtering and
smoothing algorithms propagate the Cholesky factors NXk

and

1The superscript "∞" is used here to indicate steady-state covari-
ance/precision matrices.

SXk
. In the final step, these factors are combined at each node

to obtain (symmetric and positive semidefinite) covariance
VXk

and precision matrices WXk
[6].

Numerical stability is increased by square-root Kalman
filtering and smoothing for two reasons: firstly, the propagated
square-root quantities have a reduced dynamic range, and
secondly, positive definiteness and symmetry is enforced by
computing the covariance or precision matrices from their
square-roots.

Let us now consider Gaussian square-root message passing
through each of the nodes and blocks (composite nodes) in
the factor graph in Fig. 1, as shown in Tables I-VI. For the
square-root Kalman filter, the update equation for the mean is
the same as in regular Kalman filter. For the information filter
however, there are two versions: one, where the transformed
mean is kept in the standard form

−→
ξX =

−→
WX
−→mX as shown in

[14] and the other which uses a factored mean
−→
ζX =

−→
SX
−→mX .

The latter version is novel to the best of the authors’ knowl-
edge and has the advantage that only square-root quantities
are propagated. These have a reduced dynamic range, which
makes this type of information filter numerically even more
robust. This however, comes at the cost of additional QR-
decompositions (cf. Tables I and V).

Regarding covariance or precision updates, there are two
different forms of equations: CTC = ATA + BTB (e.g.
covariance update at the plus-node or precision update at
equality-node) and CTC = ATA − BTB (e.g. covariance
update at the equality-node or precision update at the plus-
node). Given the Cholesky factors A and B on the right-hand
side of the equation, the goal is to obtain the Cholesky factor
C, without computing the full matrix. For the sum, we proceed
as follows:

CTC = ATA+BTB (7)

(CT, 0)QTQ

(
C
0

)
= (AT, BT)

(
A
B

)
(8)

Where the upper triangular matrix (CT, 0)T and the orthogonal
matrix Q are obtained via the QR-decomposition qr(·):

Q

(
C
0

)
= qr

(
A
B

)
. (9)

For the difference, the Cholesky factor can be obtained via
the complex QR-decomposition by introducing the imaginary
unit in front of the B matrix in (9) as shown in Table VI, or via
the real hyperbolic householder transform, which was used in
[18] to obtain the square-root MBF. The remaining proofs of
the update rules of Tables I-VI are deferred to the appendix.

A. Kalman Filter and Smoother Implementations

In the following we will show the ease with which, using
the tabulated message passing rules from Tables I-VI, both
known and novel square-root Kalman filters and smoothers,
as well as input estimators can be devised.

In Tables I-VI the orthogonal matrix Q = (Q1, Q2) is
obtained by QR decomposition of the matrix on the right



TABLE I
GAUSSIAN SQUARE-ROOT MESSAGE PASSING THROUGH AN EQUALITY

NODE.

X
=

Y

Z

Constraint X = Y = Z, expressed by δ(z − x) δ(y − x).
Forward precision

−→
W =

−→
ST−→S and covariance V = NTN .

−→
ζZ = QT

1

( −→
ζX
←−
ζY

)
(I.1)

−→
ξZ =

−→
ξX +

←−
ξY (I.2)

(Q1, Q2)

( −→
SZ

0

)
= qr

( −→
SX
←−
SY

)
(I.3)

mX = mY = mZ (I.4)
NX = NY = NZ (I.5)

ξ̃X = ξ̃Y + ξ̃Z (I.6)

With the placeholder Ψ ∈ {ζ, ξ, S}, for the messages in
reverse direction, replace

−→
ΨZ with

←−
ΨX and

−→
ΨX with

←−
ΨZ .

The submatrix Q1 represents the first n columns of Q
(computed via the QR decomposition), where n = dim(X).

hand side of the respective covariance/precision update equa-
tion. In the corresponding update equations for the (forward
or backward) transformed mean vector ξX = WXmX (or
ζX = SXmX ) and regular mean vector mX , computations
can be saved by using only the submatrices Q1 or Q2 (of
appropriate dimensions) instead of the full Q matrix. Note
that by resorting to algorithms such as the Householder QR-
decomposition ([11], page 248), one can compute only the
required submatrices instead of the full QR decomposition.

a) The Covariance Square-Root Filter [19]: is based
on the forward recursion with the forward mean −→mXk

and
the Cholesky factor

−→
NXk

of the forward covariance
−→
VXk

=
−→
NT

Xk

−→
NXk

. The mean and Cholesky factor are propagated
through the A-matrix using (III.1) and (III.2) respectively. The
input and state noise are taken into account for, with (III.1)
and (III.2) for the B-matrix, followed by (II.1) and (II.2) for
the plus-node. The update step through the observation block
is performed with (IV.1) and (IV.2).

b) The Information Square-Root Filter [19]: is based
on the forward recursion with the forward transformed mean−→
ζXk

=
−→
SXk

−→mXk
and the Cholesky factor

−→
SXk

of the forward
precision

−→
WXk

=
−→
ST
Xk

−→
SXk

. The transformed mean and
Cholesky factor are propagated through the A-matrix using
(the time-reversed version, i.e. flipping the direction of the
arrows) (III.3) and (III.5) respectively. The input and state
noise are accounted for with (V.1) and (V.3). The update step

TABLE II
GAUSSIAN MESSAGE PASSING THROUGH AN ADDER NODE.

X
+

Y

Z

Constraint Z = X+Y , expressed by factor δ(z− (x+y)).
Dual precision W̃ = S̃TS̃ and covariance

−→
V =

−→
NT−→N .

−→mZ = −→mX +−→mY (II.1)

Q

( −→
NZ

0

)
= qr

( −→
NX−→
NY

)
(II.2)

mZ = mX +mY (II.3)

ξ̃X = ξ̃Y = ξ̃Z (II.4)
S̃X = S̃Y = S̃Z (II.5)

With the placeholder Ψ ∈ {m,N}, for the messages in
reverse direction, replace

−→
ΨZ with

←−
ΨX and

−→
ΨX with

←−
ΨZ

and change the sign of −→mY .

TABLE III
SQUARE-ROOT GAUSSIAN MESSAGE PASSING THROUGH A MATRIX

MULTIPLIER NODE WITH ARBITRARY REAL MATRIX A.

X
A

Y

Constraint Y = AX , expressed by factor δ(y −Ax)

−→mY = A−→mX (III.1)
−→
NY =

−→
NXA

T (III.2)

←−
ζX =

←−
ζY (III.3)

←−
ξX = AT←−ξY (III.4)
←−
SX =

←−
SYA (III.5)

mY = AmX (III.6)
NY = NXA

T (III.7)

ξ̃X = ATξ̃Y (III.8)
S̃X = S̃YA (III.9)

through the observation block is performed with (the time-
reversed version of) (III.3) and (III.5) through the C-matrix
followed by (I.1) and (I.3) through the equality-node.

c) The 2-Filter Smoother: is based on combining the
forward mean −→mXk

and the Cholesky factor
−→
NXk

with the
backward transformed mean

←−
ζXk

and and the Cholesky factor



TABLE IV
GAUSSIAN SQUARE-ROOT MESSAGE PASSING THROUGH AN OBSERVATION

BLOCK.

X
=

Z

A

Y

−→mZ = −→mX + R̄TG̃−T(←−mY −A−→mX) (IV.1)

Q

(
G̃ R̄

0
−→
NZ

)
= qr

( ←−
NY 0
−→
NXA

T −→
NX

)
(IV.2)

ξ̃X = FTξ̃Z +ATG (A−→mX −←−mY ) (IV.3)

Q

(
S̃X

0

)
= qr

(
S̃ZF

G̃−TA

)
(IV.4)

with F 4
= I −

−→
NT

X

−→
NXA

TGA (IV.5)

and G =
(
G̃TG̃

)−14
=
(←−
VY +A

−→
VXA

T
)−1

(IV.6)

With Ψ ∈ {m,N}, for the reverse direction, replace
−→
ΨZ

with
←−
ΨX and

−→
ΨX with

←−
ΨZ . For Ψ ∈ {ξ̃, S̃} exchange ΨZ

and ΨX and change “+” to “-” in (IV.3).

←−
SXk

of the backward precision. The Square-Root Covariance
Filter runs forward in time, the Square-Root Information Filter
backwards in time and (10-11) are finally used to fuse the
forward and backward estimates to get the marginals mX and
VX = NT

XNX as follows:

mX = −→mX + M̃−TL̃T
(←−
ζX −

←−
SX
−→mX

)
(10)

Q

(
L̃ M̃
0 NX

)
= qr

(
I 0

−→
NX
←−
ST
X

−→
NX

)
. (11)

d) The Square-Root MBF [18]: is based on the forward
recursion using the Square-Root Covariance Filter followed
by propagating the dual mean ξ̃Xk

4
= W̃Xk

(−→mXk
− ←−mXk

)
and the Cholesky factor of the dual precision S̃Xk

with
W̃Xk

= S̃T
Xk
S̃Xk

backwards in time. The update for the A-
node is performed with (III.8 and III.9). The dual precision,
as well as its square-root form are invariant to the plus-node
(which makes them excellent input estimators), therefore the
remaining update through the observation block is performed
via (IV.3) and (IV.4). The marginal mean mXk

and variance
VXk

are obtained via the single-edge relations (VI.7), (VI.9)
and (VI.10).

e) The Square-Root BIFM: is based on the backward
recursion using the Square-Root Information Filter and prop-
agating the mean mXk

and the Cholesky factor of the variance
NXk

with VXk
= NT

Xk
NXk

forwards. The update for the A-

TABLE V
GAUSSIAN MESSAGE PASSING THROUGH AN INPUT BLOCK.

X
+

Z

A

Y

−→
ζZ = QT

2

(
0

−→
ζX +

−→
SXA

−→mY

)
(V.1)

−→
ξZ =

−→
ξX + R̃TH̃−T

(−→
ξY −AT−→ξX

)
(V.2)

(Q1, Q2)

(
H̃ R̃

0
−→
SZ

)
= qr

( −→
SY 0
−→
SXA

−→
SX

)
(V.3)

mX = F̃TmZ +AH
(
AT−→ξX −

−→
ξY
)

(V.4)

Q

(
NX

0

)
= qr

(
NZ F̃

H̃−TAT

)
(V.5)

with F̃ 4
= I −

−→
ST
X

−→
SXAHA

T (V.6)

with H =
(
H̃TH̃

)−14
=
(−→
WY +AT−→WXA

)−1

(V.7)

With Ψ ∈ {ζ, ξ, S}, for the reverse direction, replace
−→
ΨZ

with
←−
ΨX and

−→
ΨX with

←−
ΨZ and change the sign of −→mY

and
−→
ξY . For Ψ ∈ {m,N} additionally replace ΨZ with

ΨX and ΨX with ΨZ . The submatrix Q2 represents the
last n columns of Q = (Q1, Q2) (computed via the QR
decomposition), where n = dim(X).

node is performed with (III.6) and (III.7). The update through
the input and state noise block are performed via (V.4) and
(V.5). This version is new to the best of the authors knowledge.
Its derivation is shown in the appendix.

B. The Square-Root MBF Input Estimator

Input estimation via standard Kalman smoothing has previ-
ously been described in [9], [1]. Here we propose numerically
stable square-root version of this input estimator.

The square-root MBF input estimator computes the dual
mean ξ̃Xk

and Cholesky factor S̃Xk
of the dual precision

and propagates these (backwards) through the B-node via
(III.8) and (III.9) to get the likelihood of the input uk. The
(marginal) mean mUk

and variance VUk
of the input are finally

obtained through the single-edge relations (VI.7), (VI.9) and
(VI.10), which combine the likelihood (parametrized by ξ̃Uk

and Cholesky factor S̃Uk
) with the Gaussian prior on the input

(parametrized by −→mUk
and
−→
VUk

).



TABLE VI
GAUSSIAN SINGLE-EDGE MARGINALS (m, V ) AND THEIR DUALS (ξ̃, W̃ ).

ξ̃X
4
= W̃X(−→mX −←−mX) (VI.1)

=
−→
ST
X

−→
ζX −

−→
ST
X

−→
SXmX (VI.2)

=
←−
ST
X

←−
SXmX −

←−
ST
X

←−
ζX (VI.3)

W̃X
4
= (
−→
VX +

←−
VX)−1 = S̃T

X S̃X (VI.4)

Q

(
S̃X

0

)
= qr

( −→
SX

iNX
−→
ST
X

−→
SX

)
(VI.5)

= qr

( ←−
SX

iNX
←−
ST
X

←−
SX

)
(VI.6)

mX = −→mX −
−→
NT

X

−→
NX ξ̃X (VI.7)

= ←−mX +
←−
NT

X

←−
NX ξ̃X (VI.8)

VX = NT
XNX (VI.9)

Q

(
NX

0

)
= qr

( −→
NX

iS̃X
−→
NT

X

−→
NX

)
(VI.10)

= qr

( ←−
NX

iS̃X
←−
NT

X

←−
NX

)
(VI.11)

C. Numerical Simulation of Multi-mass Resonator

In industrial milling, undesired vibrations are a major cause
of machine wear and imprecision in workpiece elaboration.
Therefore, monitoring (cutting) forces on the workpiece using
dynamometers is essential. Apart from frequency domain
approaches as in [20], in [1] and [21] model-based approaches
based on Kalman filtering and smoothing were proposed.

The workpiece-sensor-machine coupling is described us-
ing the 4-mass resonator model (machine, table, sensor and
workpiece) proposed in [1]. The model consists of a concate-
nation of second-order models, describing masses, differing
significantly in weight, subject to damping and mechanical
coupling. The 4-mass resonator model gives rise to an 8th
order state space model or equivalently to an 8th order transfer
function, whose frequency response (3.5 kHz sampling rate)
is shown in Fig. 4 (top). By fitting an 8th order transfer
function to the experimentally (impact hammer) measured
unidirectional frequency response in [1], four complex pole
pairs at p1 = 0.5775 ± 0.8015i, p2 = 0.7609 ± 0.6347i,
p3 = 0.9596 ± 0.2166i and p4 = 0.9924 ± 0.0780i of the
corresponding discrete-time model are obtained.

Systems based on the presented nominal model were sub-
sequently used to assess the performance of different Kalman
smoothers (RTS, MBF and BIFM), as well as of their respec-
tive square-root implementations (SR-MBF and SR-BIFM).
In the numerical simulations the eigenvalues of the nominal
system were randomly perturbed, however enforcing the mag-
nitude of eigenvalues to be less than one, to guarantee stability.
Thereby, a wide range of condition numbers for the steady-

state covariance matrix was obtained (cf. Fig. 4).
In the (base-10) logarithmic domain, condition numbers

were assigned to bins of size 0.5. For each bin, we ran 2000
simulations and successive state estimations at an average SNR
of 24 dB and evaluated the resulting estimation failure rates. If
the relative mean squared error of the state estimate exceeded
10% for any state, the estimation was considered as failed.
Note that for computing the condition number of the steady-
state covariance matrix, we used MATLAB’s dare-function
[22]. Systems for which the dare-function failed to find the
steady-state solution, were not suited for comparison and were
therefore discarded. Such systems were extremely rare and
had a frequency of 61 out of one 106 simulated state space
models. Remarkably however, despite the dare-function failing
to obtain the steady-state covariance matrix (which precludes
us from computing its condition number) the relative MSEs of
the square-root MBF and square-root BIFM were small even
for these kind of systems.

Figure 4 (center) shows a comparison in estimation failure
rate between the RTS, MBF, square-root MBF (SR-MBF) and
MBF after the state reparametrization (TS-MBF) suggested
in subsection II-C, as a function of the condition number of
the steady-state covariance. Figure 4 (bottom) shows the same
comparison for the BIFM smoother. The superior performance
of the regular BIFM smoother compared to the RTS and MBF
in this scenario can partly be explained by the state space
model being subject only to scalar input noise and absence of
state noise. Additionally, in order to compare the BIFM with
the MBF and RTS smoother, the failure rate is plotted against
the condition number of the steady-state forward covariance
matrix, which is correlated but not equal to the condition
number of the backward precision matrix. The filtering step
of the BIFM and SR-BFIM smoother however, are based on
the information filter parametrizations.

The good performance of the Kalman smoothers based on
the suggested state transformations, can be explained on the
one hand by the reduction of the condition number of the state
covariance matrix and on the other hand by the almost diagonal
structure of the covariance matrix (cf. II-C). Furthermore,
as shown in [23] state space models tend to have inferior
numerical properties when they are in companion form, i.e.
in controllable or observable canonical form. Therefore, a
further contribution to numerical stability comes from the
change of the state space model from a structured canonical
form into a more balanced one. A major limitation is that the
proposed transformation, unlike square-root message passing
(cf. section III), works only for time-invariant systems and
is based on (accurate) knowledge of the noise and system
model. The excellent numerical performance and moderate
increase in computational requirements, suggests therefore that
square-root Kalman smoothers are the method of choice in
numerically challenging scenarios.

IV. CONCLUSION

In practical applications which feature large dynamic ranges
of the parameters, large state dimensions and high-precision
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Fig. 4. Top: Nominal frequency response of the 4-mass resonator model
fitted to experimental data from [1]. Center: Estimation failure rate for RTS,
MBF, MBF with state reparametrization (TS-MBF) and square-root MBF (SR-
MBF) plotted against the base-10 logarithm of the condition number. Bottom:
Estimation failure rate for RTS, BIFM, BFIM with state reparametrization
(TS-BIFM) and square-root BIFM (SR-BIFM).

measurements, usage of Kalman filters and smoothers is
limited due to numerical stability issues. Instead of propa-
gating the full covariance or precision matrix, propagating the
Cholesky factors of these matrices, reduces the dynamic range
and lowers the condition number in a principled way.

We presented a comprehensive list of tabulated square-
root Gaussian message update rules (cf. Tables I-VI), from
which a variety of both known and new square-root Kalman
filters and smoothers can readily be composed. In particular,
we presented a square-root version of the recently proposed
BIFM smoother [5], which has a favorable performance in
single-input, multiple-output (SIMO) systems, such as sensor
networks. We furthermore suggested some additional improve-
ments in the implementation of both the MBF and BIFM
smoother and compared computational efficiency of these
optimized versions.

APPENDIX: DERIVATION OF SQUARE-ROOT BIFM

Tables I-VI are the square-root version of the Gaussian
message passing tables presented in [5], [8]. We will derive the

updates rules of the square-root BIFM smoother (and therefore
also for the square-root information filter) by identifying the
Cholesky factor update rules with the (known) BIFM update
rules for means, covariances and precisions from [5].

1) Equality Node (Table I): To obtain the Cholesky factor
←−
SX and

←−
ζX of (the time-reversed version of) (I.1) and (I.3)

we compute the QR-decomposition of the following matrix,
containing the Cholesky factors

←−
SY ,

←−
SZ , as well as

←−
ζY =

←−
SY
←−mY and

←−
ζZ =

←−
SZ
←−mZ :

Q

(
←−
SX

←−
SX
←−mX

0 ∗

)
= qr

( ←−
SZ

←−
SZ
←−mZ

←−
SY

←−
SY
←−mY

)
. (12)

We then left-multiply with the transpose of the matrix on the
right-hand side of (12):( ←−

ST
X 0

←−mT
X

←−
ST
X ∗

)
QTQ

(
←−
SX

←−
SX
←−mX

0 ∗

)
=( ←−

ST
Z

←−
ST
Y

←−mT
Z

←−
ST
Z
←−mT

Y

←−
ST
Y

)( ←−
SZ

←−
SZ
←−mZ

←−
SY

←−
SY
←−mY

)
. (13)

Thereby we get:( ←−
ST
X

←−
SX

←−
ST
X

←−
SX
←−mX

←−mT
X

←−
ST
X

←−
SX ∗

)
=( ←−

ST
Z

←−
SZ +

←−
ST
Y

←−
SY

←−
ST
Z

←−
SZ
←−mZ +

←−
ST
Y

←−
SY
←−mY

←−mT
Z

←−
ST
Z

←−
SZ +←−mT

Y

←−
ST
Y

←−
SY ∗

)
(14)

Noting
←−
ST
X

←−
SX =

←−
WX , we identify entry (row = 1, col = 1)

with
←−
WX =

←−
WY +

←−
WZ and entry (row = 1, col = 2) with

←−
ξX =

←−
ξY +

←−
ξZ . The invariance of the marginal covariance

VX = VY = VZ at the equality-node [8] carries over to its
Cholesky factors from which (I.4) and (I.5) follow trivially.

2) Matrix Multiplier Node (Table III): To prove (III.3) we
proceed as follows:

←−
ξX =

←−
WX
←−mX = AT←−WY

←−mY (15)
←−
ST
X

←−
SX
←−mX = AT←−ST

Y (
←−
SY
←−mY ) = (

←−
SYA)T(

←−
SY
←−mY ) (16)

←−
ζX

4
=
←−
SX
←−mX =

←−
SY
←−mY

4
=
←−
ζY , (17)

where (16) to (17) follows from (20). For the Cholesky factor
of the precision (III.5), we have:

←−
WX = AT←−WYA (18)

←−
ST
X

←−
SX = AT←−ST

Y

←−
SYA = (

←−
SYA)T(

←−
SYA) (19)

←−
SX =

←−
SYA. (20)

For the Cholesky factor of the marginal covariance (III.7) we
have:

VY = AVXA
T (21)

NT
YNY = ANT

XNXA
T = (NXA

T)T(NXA
T) (22)

NY = NXA
T. (23)



3) Input Block (Table V): To obtain the Cholesky factor of
←−
SX at the input block we start with:

Q

(
H̃ R̃

0
←−
SX

)
=

( −→
SY 0
←−
SZA

←−
SZ

)
(24)

We get:

(
H̃T 0

R̃T ←−
SX

)(
H̃ R̃

0
←−
SX

)
=

(−→
ST
Y AT←−ST

Z

0
←−
ST
Z

)( −→
SY 0
←−
SZA

←−
SZ

)
(25)(

H̃TH̃ H̃TR̃

R̃TH̃ R̃TR̃+
←−
ST
X

←−
SX

)
=

(−→
ST
Y

−→
SY +AT←−ST

Z

←−
SZA AT←−ST

Z

←−
SZ

←−
ST
Z

←−
SZA

←−
ST
Z

←−
SZ

)
(26)

We can identify H̃ as the Cholesky factor of
−→
WY +AT←−WZA,

i.e. the Cholesky factor of H−1 from [8]. With R̃ =

H̃−TAT←−WZ and finally we identify entry (row = 2, col =
2) with

←−
WX =

←−
WZ − R̃TR̃ =

←−
WZ −

←−
WZA(H̃TH̃)−1AT←−WZ ,

which is the precision update formula (cf. [8]).
To obtain

←−
ζX at the input block we start with the formula

of the mean update:
←−mX = ←−mZ −A−→mY (27)

←−
SX
←−mX =

←−
SX
←−mZ −

←−
SXA

−→mY (28)

←−
SX
←−mX = QT

2

(
0
←−
SZ

)
←−mZ −QT

2

(
0
←−
SZ

)
A−→mY (29)

←−
ζX

4
=
←−
SX
←−mX = QT

2

(
0

←−
ζZ −

←−
SZA

−→mY

)
. (30)

From [5] we have:

F̃
4
= I −

←−
WZAHA

T = I −
←−
ST
Z

←−
SZA(H̃TH̃)−1AT. (31)

To get the Cholesky factor NZ of the marginal covariance VZ
we proceed as follows:

Q

(
NX

0

)
=

(
NZ F̃

H̃−TAT

)
. (32)

Now following the lines of argumentation used for the square-
root MBF in [18], we left multiply with the transpose of
that matrix and compare the result with the standard BIFM
formulas:(

NT
X , 0

)(NX

0

)
=
(
F̃TNT

Z , AH̃
−1
)( NZ F̃

H̃−TAT

)
(33)

NT
XNX = F̃TNT

ZNZ F̃ +A(H̃TH̃)−1AT. (34)

Identifying VX = NT
XNX and H = (H̃TH̃)−1 yields:

VX = F̃TVZ F̃ +AHAT, (35)

which concludes the proof.
Finally, to obtain the update for the mean, we start with the

standard BIFM update:

mZ = F̃TmX +AH
(
AT←−ξZ +

−→
ξY

)
(36)

from [5] and replace the required quantities with the computed
Cholesky factors:

mZ = F̃TmX +A(H̃TH̃)−1
(
AT←−ST

Z

←−
ζZ +

−→
ST
Y

−→
ζY

)
. (37)
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