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Abstract—Based on an idea from sparse Bayesian learning, we
propose a new approach to outlier-insensitive Kalman smoothing
using Normal priors with unknown variance (NUV). In contrast
to prior work, the actual computations essentially amount to iter-
ations of a standard Kalman smoother. Due to the additive noise
assumption and the variational representation of the outlier noise
distribution, the procedure can easily be extended to nonlinear
estimation problems, e.g., by combining outlier detection with an
Extended Kalman smoother. We consider two matrix-inversion
free Kalman smoothers, the Modified Bryson-Frasier and the
recently proposed BIFM (Backward Information Filter Forward
Marginal) smoother, whose reduced computational burden will
be pointed out.

I. INTRODUCTION

The performance of standard Kalman filters and smoothers
is severely impaired by outliers in the measurements due to
the sensitivity of the least-squares cost function to deviations
from nominal noise [1], [2]. Real measurements however, are
commonly contaminated with outliers, such as motion artifacts
in physiological signals or glint noise in radar signals [1], [3].

Prior work on dealing with robust filtering and smoothing
includes [1], [3], where Kalman smoothing is formulated as
a linear regression problem and outlier detection is performed
via a sparsifying `1-penalty. Along the same lines in [4], [5],
outliers are assumed to be non-Gaussian, and the mean squared
error criterion is replaced by an appropriate score function in
a robust M-estimation framework.

In this paper we propose a new approach to outlier-
insensitive Kalman smoothing (NUV-EM OIKS): using an
idea from sparse Bayesian learning [6], we model outliers as
Normal distributed impulses with unknown variances (NUV)
and estimate these variances by expectation maximization
(EM). In contrast to the mentioned prior works, our approach
is parameter-free and amounts essentially to iterated standard
Kalman smoothing (with additional simple update steps for
the unknown variances), i.e., we effectively stay within the
linear Gaussian framework. The extension of the proposed
framework to nonlinear estimation problems is straightforward
and will be discussed in section IV-F.

For the Kalman smoothing step we consider two matrix-
inversion free algorithms: The Modified Bryson-Frasier
smoother (MBF) [7], and the recently proposed BIFM (back-
ward information filter, forward marginal); the latter incurs
the least computational costs [8]. In contrast to the commonly
used Rauch-Tung-Striebel (RTS) smoother [9], neither the
MBF nor the BIFM require inverting the state covariance
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Fig. 1. Factor graph segment of the system model. (The whole factor graph
consists of many such sections, one for each time step.)

matrix at every time step and therefore both smoothers exhibit
better numerical properties, as well as a reduced computational
complexity as shown in Table II.

II. SYSTEM MODEL AND BASIC IDEA

A given discrete-time signal y = (y1, . . . , yN ) is modeled
as the output of the linear state space model

Xk = AXk−1 + BUk−1 +Wk−1

Yk = CXk + Zk + Sk (1)

with A ∈ Rd×d, Xk,Wk,B,C
T ∈ Rd, and Uk, Yk ∈ R.

The input signal U = (U1, . . . , UN ) is a sequence of
Gaussian random variables (not necessarily i.i.d., but with
known means and variances).

We have two sources of observation noise: the normal
distributed observation noise Z = (Z1, . . . , ZN ) and the
outlier-causing impulsive noise S = (S1, . . . , SN ). The for-
mer is i.i.d. zero-mean Gaussian with constant variance σ2

Z .
Additionally, we have i.i.d. zero-mean Gaussian process noise
W = (W1, . . . ,WN ) to account for modeling uncertainties.

The impulsive noise terms (S1, . . . , SN ) are modeled as
independent zero-mean Gaussians, each with its own variance
γk, with k ∈ {1, ..., N}. The point of this model is that both
the maximum-likelihood estimate and MAP-estimate (with
suitable priors) of (γ1, . . . , γN ) tend to be sparse [8], i.e. most
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of the estimated components γ̂k will be exactly zero, which
implies Sk = 0.

The unknown variances (γ1, . . . , γN ) will be estimated by
an EM algorithm, as described in Section IV. In each E-
step of the EM algorithm, the variances (γ1, . . . , γN ), are
(momentarily) fixed; the resulting model is purely linear
Gaussian, and each E-step amounts to one round of Kalman
smoothing. We first turn to the Kalman smoothing procedure.

III. INVERSION-FREE KALMAN SMOOTHING

To describe the two Kalman smoother variations, we will
use the factor graph block diagram representation (cf. [10])
of the state space model in (1) shown in Fig. 1. Using
this representation, tabulated message passing rules as shown
in Table I can be devised, which allow the composition of
algorithms ranging from state estimation to output smoothing
(interpolation) and input estimation [8].

Let γ = (γ1, ..., γN ) in Fig. 1 be fixed. Inference in linear
state space models, i.e. Kalman filtering and smoothing, boils
down to sum-product message passing on the given factor
graph [10]. There are two general approaches to compute the
smoothing distribution [11]. Firstly, by a two-filter (2-Filt.)
smoother [10], based on the observation that:

p(xk|y1:N ) ∝ p(xk|y1:k)p(yk+1:N |xk), (2)

which means that the smoothing distribution can be computed
by a forward pass and an independent backward pass (Kalman
filter that runs backwards in time). Secondly, via recursive
Bayesian estimation as in (3), which requires the computation
of the filtering distribution p(xk|y1:k) beforehand.

p(xk|y1:N)=p(xk|y1:k)
∫
p(xk+1|xk)p(xk+1|y1:N)

p(xk+1|y1:k)
dxk+1 (3)

The RTS, as well as the MBF and the BIFM smoother,
are all instances of this representation of recursive Bayesian
estimation.

A. Notation

We will express the filtering and smoothing update steps
in message passing notation (cf. [10]). The Gaussian (for-
ward) filtering distribution p(xk|y1:k), computed with the
covariance Kalman filter, is parametrized by the mean −→mXk

and covariance
−→
VXk

. The backward filtering distribution
p(xk|yk:N ) computed with the backward information filter,
will be parametrized by the precision matrix

←−
WXk

(inverse
of covariance matrix) and the transformed mean

←−
ξXk

,
←−
WXk

←−mXk
.

The right-pointing arrow is used for quantities in the forward
filter that depend only on past observations [10], the left
pointing arrow for quantities, that depend only on future
and present observations, whereas message quantities without
an arrow indicate parameters of the marginal distribution
p(xk|y1:N ).

Node Update rule

A
ZX

mZ = AmX , VZ = AVXAT (4)

ξ̃X = ATξ̃Z , W̃X = ATW̃ZA (5)

+
ZX

B

U mZ = F̃TmX +BH
(
BT←−ξ Z +

−→
ξ U

)
(6)

VZ = F̃TVX F̃+BHBT (7)

F̃ = I−
←−
WZBHBT (8)

H = (
−→
WU +BT←−WZB)−1 (9)

ξ̃X = ξ̃Z , W̃X = W̃Z (10)

=
ZX

C

Y

mZ =mX , VZ = VX (11)

ξ̃X = FTξ̃Z +CTG(C−→mX −←−mY ) (12)

W̃X = FTW̃ZF+CTGC (13)

F = I−
−→
VXCTGC (14)

G = (
←−
V Y +C

−→
VXCT)−1 (15)

TABLE I
UPDATE RULES FOR BIFM (ABOVE DASHED LINE) AND MBF (BELOW

DASHED LINE).

B. MBF and BIFM Smoother

Table I shows MBF smoother and BIFM update rules for
each node of the factor graph. Both smoothers consist of
three message updates, through the “equality”-, “multiplier”-
and “plus”-node. The smoothing distribution computed via the
MBF is parametrized by the dual precision W̃X , (

−→
VX +

←−
VX)−1 and the dual mean ξ̃X , W̃X(−→mX −←−mX) as de-
scribed in [8]. The (forward) filtering distribution p(xk|yk:N ),
parametrized by −→mXk

and
−→
VXk

is computed via the standard
covariance Kalman filter. Note that the invariance of the
message parameters W̃X and ξ̃X at the “plus”-node, renders
the MBF an ideal candidate for systems with multiple inputs
and state noise or for input estimation as in [12].

For the BIFM in contrast, the smoothing distribution is
parametrized by the mean mX and the covariance ma-
trix VX . To determine the filtering distribution p(xk|yk:N ),
parametrized by

←−
ξXk

and
←−
WXk

the BIFM uses the backward
information filter [10]. Note that due to the invariance of the
marginal mean and the covariance at the “equality”-node, the
BIFM is well suited for systems with multiple outputs.

The duality between BIFM and the MBF can be appreciated
by observing that the MBF smoother is inversion-free when
working with scalar observations, whereas BIFM is inversion-
free when working with scalar inputs. However, in our simu-
lations we did not find any significant difference in numerical
precision between these two smoothers. Table II shows the
computational complexity, the number of matrix inversion and
the storage requirements of the RTS, MBF, BIFM and the 2-
Filter smoother. The MBF and BIFM compare favourably with
other Kalman smoothers and we advocate their usage.

In addition to these two smoothers, using the same

2



24th European Signal Processing Conference (EUSIPCO 2016)

matrix mult. matrix inv. storage

RTS 4 (+ 0) 1
−→
VX′

k
,
−→
VXk

2-Filter 10 (+ 0) 0
−→
VXk

MBF 6 (+ 0) 0
−→
VXk

BIFM 4 (+ 2) 0
←−
WXk

TABLE II
MATRIX MULTIPLICATIONS (WITH ADDITIONAL COMPUTATIONS DUE TO

STATE NOISE IN PARENTHESIS), INVERSIONS AND STORAGE AT EVERY
TIME-STEP FOR DIFFERENT KALMAN SMOOTHERS.

parametrization of the Gaussian messages, we can devise
two additional smoothers, namely a forward-pass MBF and a
backwards version of the BIFM, denoted Forward Information
Filter, Backward Marginal (FIBM). The forward-pass MBF
uses the time-reversed covariance Kalman filter and performs
the forward steps with the dual mean and dual precision,
whereas the FIBM computes the filtering distribution with the
forward information filter, and performs the backward pass
with the marginal mean and covariance. Note that for these
two smoothers the A-matrix needs to be invertible, which
renders them unpractical for time-varying systems, e.g., like
the ones obtained from linearization of the state space model
as in section IV-F. Nonetheless, given invertible state transition
matrices, one could envision estimation on moving windows,
which employ the latter two Kalman smoother versions.

IV. OUTLIER-INSENSITIVE KALMAN SMOOTHER

Our proposed NUV-EM OIKS combines MBF/BIFM
smoothing with the time-varying noise variance model for im-
pulsive noise. Given a signal y = (y1, . . . , yN ), the MAP/ML
estimates

γ̂k , argmax
γk

p(y|γ1, . . . , γk, . . . , γN )

N∏
`=1

p(γ`) (16)

will result in γk > 0 when an outlier is detected at time step
k and 0 otherwise. To compute the ML estimate in a local
manner, akin to message passing, we devise EM [13], [14]
updates that iteratively compute all γ̂k in parallel.

A. Expectation Step

By the Markov property of the state space model, the
expectation in the i-th iteration is:

Q(γ) =
∑N
`=1Q(γ`) = EX|γi−1,y[log(p(y,x,γ))]

=
∑N
`=1EX`|γi−1,y[log(p(y`|x`, γ`))]+log(p(γ`))+const (17)

With νk , σ2
Z + γk and the second moment µII

Xk
= (VXk

+
mXk

mT
Xk

) we get:

EXk|γi−1,y [log(p(yk|xk, γk))] ∝ (18)

log(νk) +
(
y2k − 2ykCmXk

+ CµII
Xk

CT
)
/νk

The marginal mean and covariance mXk
and VXk

are com-
puted via a forward-backward sweep of the MBF or the BIFM.
For the first iteration γ0 is initialized as the all-zero vector.
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Fig. 2. Top: Ground-truth (reference) and observation y with outliers. Bottom:
Kalman smoother (KS), Kalman smoother with median filter (MedKS) and
the proposed outlier-insensitive Kalman smoother (OIKS).

B. Maximization Step

The maximization of (17) w.r.t. to γk yields:

1
νk
−

(y2k−2ykCmXk
+CµII

Xk
CT)

ν2
k

=−p
′(γk)
p(γk)

(19)

When using an improper prior, i.e. p(γk) ∝ 1, which imposes
an improper outlier distribution p(sk) ∝ 1/sk and is heavily
sparsifying, we obtain an analytic expression for the updates:

γik = max
(
y2k − σ2

Z − 2CykmXk
+ CµII

Xk
CT, 0

)
(20)

C. Termination Criterion

We iterate the EM steps until convergence, defined as:

max
k∈{1,...,N}

|γik − γi−1k | ≤ 10−4 γi−1k , (21)

or up to a maximum number of iterations (10 in our case).

D. Noise Floor Estimation:

To estimate the noise floor VZ = σ2
Z , we resort again to the

EM and alternate between γ and VZ estimation. The key step
to estimate VZ is to only consider observations that were not
detected as outliers in the previous iteration. We use an initial
noise floor estimate σ2

Z0
(which can for instance be inferred

from the output signal’s energy) to mark an observation yk as
outlier if: γk ≥ 10σ2

Z0
. The resulting update equation for VZ ,

with No being the number of outliers, is therefore:

V iZ =
1

N −No

∑
k:γi

k<10σ2
Z0

y2k − 2ykCmXk
+ CµII

Xk
CT (22)

E. Extension to Multi-Channel Observations

Given a multi-dimensional observation vector yk =
(y

(1)
k , ..., y

(L)
k ) ∈ RL, which is affected by outliers (cf. Fig. 3),

we can apply the same procedure as in the scalar observation
case if we assume that both the vector-valued noise floor
Z[k] and impulsive noise source S[k] on each channel are
independent. This allows us to split the C-matrix into row

3
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Fig. 3. The outlier insensitive smoother can be extended to multi-channel
outputs by splitting the C matrix and assuming i.i.d. outliers.

vectors (cf. Fig. 3) and use the same computation rules
described for the scalar output case.

F. Extension to Nonlinear State Space Models

Assuming additive input, state and measurement noise, the
outlier insensitive state estimation can be extended to non-
linear dynamical systems. Given the discrete-time nonlinear
dynamics, together with an additive impulsive noise source,
we use an Extended Kalman smoother combined with the
sparsifying outlier noise variance estimation. Here we will
limit ourselves to autonomous systems with nonlinear state
dynamics xk = f(xk−1) + wk−1, where f : Rn → Rn
is a nonlinear function and w is the process noise. The
measurement process is assumed to be linear, as considered
before. The main step in the linearization of the nonlinear state
dynamics is:

f(Xk) ≈ f(−→mX′k−1
) + Ak−1(Xk −−→mX′k−1

), (23)

where Ak−1 is the Jacobi matrix of f(·) evaluated at −→mX′k−1
.

The Extended Kalman smoother (EKS) can be implemented
either via an extended version of the MBF or BIFM. In
the MBF-EKS version, the filtering problem is solved using
the standard Extended Kalman Filter [11], and the backward
step is performed on the linearized system (23), using the
MBF smoother. Conversely, the BIFM-EKS uses the backward
extended information filter [15] and the BIFM update rules on
the linearized system as described in Table I.

V. NUMERICAL SIMULATIONS

A. Linear Time-Invariant System

To evaluate the NUV-EM OIKS we will first use a lin-
ear single-input single-output system with system matrices:
A = [1.12,−0.49, 0.11,−0.35; 1, 0, 0, 0; 0, 1, 0, 0; 0, 0, 1, 0],
B = [−0.38, 0.59, 0.51, 0.3] and C = [1, 0, 0, 0]. Note that
this system is both stable and observable.

Fig. 2 shows the noisy output y and the corresponding
noise-free output (reference) of this model subject to sinu-
soidal inputs. Uncertainty in the dynamics and measurements
are accounted for by Gaussian i.i.d. input, state and measure-
ment noise, whereas the outliers are modeled with Laplace

distributed noise. The output’s SNR when considering only
the Gaussian noise floor is 7.4 dB, whereas if also impulsive
noise is accounted for (here, 20% Laplace-distributed outliers)
the S(I)NR drops to −6.1 dB. The estimation performance
of the NUV-EM OIKS is significantly less deteriorated by
impulsive noise (cf. Fig. 2) compared to a regular Kalman
smoother implemented as MBF (KS) and even compared to
an adhoc robustified Kalman smoother we will call MedKS.
To remove outliers the MedKS filters the signal y with a 5-th
order median filter and then runs a regular Kalman smoother.

To evaluate the performance of our NUV-EM OIKS we ran
a regular Kalman smoother, the MedKS and the so called
"doubly robust smoother" from [1], (which is based on an
L1 penalty on the outliers), on the state space model and
noise floor level as described before, but varying the output
contamination levels. In contrast to [1], where a parameter
λ, setting the sparsity level, has to be determined via a grid-
search, the NUV-EM OIKS is free of tuning parameters.

In Fig. 4, we can see that both the robust smoother from [1]
and the NUV-EM OIKS clearly outperform both the regular
Kalman smoother and the ad hoc robustified version. For
low contamination levels the NUV-EM OIKS’ performance is
comparable to [1], but for high contamination levels the NUV-
EM OIKS outperforms the algorithm from [1]. Unlike [1]
which estimates the mean of the outlier value (which becomes
increasingly hard when contamination levels are very high),
the NUV-EM OIKS does not follow a generative approach, but
instead assigns to outliers a large variance and thus discards
them from the smoothing procedure.

For low contamination levels the performance of the MedKS
is comparable to the NUV-EM OIKS, but with an increasing
number of outliers (or contiguous noise bursts) the strength of
the model-based approach becomes evident. Note that when a
signal is (almost) free of outliers, most γ’s are set to zero and
the NUV-EM OIKS reverts to a regular KS.

B. Nonlinear State Space Model: Van der Pol Oscillator

The Van der Pol oscillator describes a stable oscillation
subject to nonlinear damping, which can be used to model
a variety of relaxation oscillations such as for instance ECG
waveforms [16]. The discrete-time model can be obtained via
the Euler method resulting in:

X1[k + 1] = X1[k] +X2[k]∆ +W1[k]

X2[k + 1] = X2[k] + [µ(1−X2
1 [k])X2[k]−X1[k]]∆ +W2[k]

Y [k] = CX[k] +Z[k] + S[k], (24)

where Y [k] is the multichannel output signal and C =
[1, 0; 0, 1], µ the damping coefficient and ∆ the step size.
Assuming diagonal covariance matrices for both the noise
floor Z[k] and impulsive noise source S[k], we can treat each
channel separately as described in section IV-E.

Fig. 5 shows the simulated two-channel output of a Van
der Pol oscillator with µ = 0.5 and ∆ = 0.01 subject to
impulsive noise with a contamination level of 10%. The outlier
insensitive extended Kalman Smoother, implemented as an

4
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Fig. 4. Comparison of RMSE of state estimates of a regular Kalman
smoother (KS), the MedKS, the DRS from [1] and the proposed OIKS against
percentage of outliers in the measurements.
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Fig. 5. The NUV-EM OIEKS detects most of the outliers on both channels
and assigns them a large variance γ. Correctly detected outliers are marked
with circles.

MBF-EKS, assigns large variances to observations affected
by outliers, the remaining impulsive noise variances are set to
zero, indicating the absence of outliers.

VI. CONCLUSION

We have presented an outlier-insensitive Kalman smoother
denoted NUV-EM OIKS, which can be used both for linear as
well as nonlinear systems when combined with an Extended
Kalman smoother. Based on ideas from sparse Bayesian learn-
ing, outliers are modeled as Gaussians with unknown vari-
ances, which are estimated by the EM algorithm, resulting in
a sparse outlier detection. The actual computations essentially
boil down to iterations of standard Kalman smoothers.

We have considered two Kalman smoothers: the Modified
Bryson-Frasier (MBF) and the Backward Information Filter
Forward Marginal (BIFM) from [8], neither of which requires

inversions of the state covariance matrix. We have also pointed
out the advantages of the new BIFM Kalman smoother which
has a lower complexity in terms of matrix multiplications and
and a comparable numerical stability, which was corroborated
in the simulated examples.

Regarding future work, the combination of the proposed
outlier-insensitive Kalman smoother with system identification
and input signal estimation as in [12] seems promising for
applications such as heart beat detection in ballistocardiogram
recordings [12], which are usually heavily affected by motion
artifacts. Finally, the current cost function has a per sample
penalty on the i.i.d. outliers, which works well for the con-
sidered scenarios, but is not tailored to burst noise, which is
characterized by contiguous blocks of outliers.
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