
An Algorithm for Simultaneous Partial Inverses
Jiun-Hung Yu and Hans-Andrea Loeliger

Department of Information Technology and Electrical Engineering
ETH Zurich, Switzerland

Email: {yu, loeliger}@isi.ee.ethz.ch

Abstract—The simultaneous partial-inverse problem is simi-
lar to the multi-sequence shift-register synthesis problem. The
paper introduces the problem and proposes a new algorithm
for its solution. An application to decoding interleaved Reed-
Solomon codes, beyond half the minimum distance, is also
demonstrated.

I. INTRODUCTION

In this paper, we propose an algorithm that solves the
following problem.

Simultaneous Partial-Inverse (SPI) Problem: For i =
1, 2, . . . , L, let b(i)(x) and m(i)(x) be nonzero polynomials
over some field F with deg b(i)(x) < degm(i)(x). The
problem is to find a nonzero polynomial Λ(x) ∈ F [x] of
the smallest degree such that

deg
(
b(i)(x)Λ(x) mod m(i)(x)

)
< τ (i) (1)

for given τ (i) ∈ Z with 1 ≤ τ (i) ≤ degm(i)(x). 2

It is not hard to prove (see Section II) that this problem
has always a unique solution, up to a scale factor.

In the special case where L = 1, the SPI problem reduces
to the Partial-Inverse Problem of [1], which includes comput-
ing inverses in F [x]/m(x), computing Padé approximants,
and solving the key equation for decoding Reed-Solomon
codes as special cases.

The SPI problem for L > 1 is similar to the multi-sequence
shift-register synthesis (MSSRS) problem [2]–[5] and can be
used for similar purposes (such as [6]–[8]). Indeed, inspired
by [8]–[10], we demonstrate the application of the proposed
SPI algorithm to decoding a scheme of interleaved Reed-
Solomon codes beyond half the minimum distance. However,
the SPI problem is not identical to the MSSRS problem; e.g.,
the SPI problem has always a unique solution, but neither the
original LFSRS problem [11] nor the MSSRS problem have
this property.

Also, the algorithm proposed in this paper looks very
similar to the MSSRS algorithms in [2]–[5], but it is not
identical to any of them. Moreover, the proof of the proposed
algorithm is a nontrivial generalization of the proof in [1] and
does not resemble any of the proofs of MSSRS algorithms.

The paper is structured as follows. The existence and
uniqueness of the SPI problem are proved in Section II,
together with a bound on the degree of the solution. The
new algorithm is proposed in Section III. The application
to decoding interleaved Reed-Solomon codes is described in

Section IV. The proof of the algorithm is given in Section V.
Section VI concludes the paper.

The coefficient of xd of a polynomial b(x) ∈ F [x] will be
denoted by bd, and the leading coefficient (i.e., the coefficient
of xdeg b(x)) of a nonzero polynomial b(x) will be denoted
by lcf b(x).

II. EXISTENCE, UNIQUENESS, AND DEGREE BOUND

It is obvious that the SPI problem has always a solution:
if Λ(x) = lcm(m(1)(x), . . . ,m(L)(x)), the least common
multiple of all m(i)(x), then

b(i)(x)Λ(x) mod m(i)(x) = 0. (2)

In general, however, the SPI problem is solved
by a polynomial of much smaller degree than
lcm(m(1)(x), . . . ,m(L)(x)), cf. Proposition 2 below.

Proposition 1 (Uniqueness). The solution Λ(x) of the
Simultaneous Partial-Inverse Problem is unique up to a scale
factor. 2

Proof: Let Λ′(x) and Λ′′(x) be two solutions of the problem,
which implies deg Λ′(x) = deg Λ′′(x) ≥ 0. Define

r′(i)(x)
4
= b(i)(x)Λ′(x) mod m(i)(x) (3)

r′′(i)(x)
4
= b(i)(x)Λ′′(x) mod m(i)(x) (4)

and consider

Λ(x)
4
=
(

lcf Λ′′(x)
)

Λ′(x)−
(

lcf Λ′(x)
)

Λ′′(x). (5)

Then

r(i)(x)
4
= b(i)(x)Λ(x) mod m(i)(x) (6)

=
(

lcf Λ′′(x)
)
r′(i)(x)−

(
lcf Λ′(x)

)
r′′(i)(x) (7)

by the natural ring homomorphism F [x] → F [x]/m(i)(x).
Clearly, (7) implies that Λ(x) also satisfies (1) for every
1 ≤ i ≤ L. But (5) implies deg Λ(x) < deg Λ′(x), which
is a contradiction unless Λ(x) = 0. Thus Λ(x) = 0, which
means that Λ′(x) equals Λ′′(x) up to a scale factor. 2

Proposition 2 (Degree Bound). The solution Λ(x) of the
Simultaneous Partial-Inverse Problem satisfies

deg Λ(x) ≤
L∑
i=1

(
degm(i)(x)− τ (i)

)
. (8)

2

Allerton 2014

Proof: Let νi
4
= degm(i)(x)− τ (i) and ν 4

=
∑L
i=1 νi. For

i = 1, . . . , L, consider the linear mappings

ϕi : F ν+1 → F νi (9)

given by

(Λ0, . . . ,Λν) 7→ Λ(x)
4
= Λ0 + Λ1x+ . . .+ Λνx

ν (10)

7→ r(i)(x)
4
= b(i)(x)Λ(x) mod m(i)(x) (11)

7→ (r
(i)
0 , . . . , r

(i)

degm(i)(x)−1
) (12)

7→ (r
(i)

τ(i) , . . . , r
(i)

degm(i)(x)−1
). (13)

Note that a polynomial Λ0 + Λ1x+ . . .+ Λνx
ν satisfies (1)

if and only if (Λ0, . . . ,Λν) ∈ kerϕi. But

dim

(
L⋂
i=1

kerϕi

)
≥ ν + 1−

L∑
i=1

νi (14)

= 1 (15)

and
(⋂L

i=1 kerϕi

)
is not trivial. There thus exists some

nonzero polynomial Λ0 + Λ1x + . . . + Λνx
ν that satisfies

(1) simultaneously for i = 1, . . . , L. 2

III. THE PROPOSED ALGORITHM

The SPI problem as stated in Section I can be solved by
Algorithm 1 on this page. Lines 1–8 are for initialization;
the nontrivial part begins with line 9. Note that lines 21–23
simply swap Λ(x) with Λ(i)(x), d with d(i), and κ with κ(i).
The only actual computations are in lines 18 and 26. Note
that in line 18, we have κ = 0 if d ≥ degm(i)(x).

A. Some Explanations

We now begin to explain the algorithm (but the detailed
proof of correctness will be given in Section V). To this end,
we define the following quantities. For any nonzero Λ(x) and
any i ∈ {1, 2, . . . , L}, let

rd(i)(Λ)
4
= deg

(
b(i)(x)Λ(x) mod m(i)(x)

)
, (16)

δmax(Λ)
4
= max
i∈{1,...,L}

(
rd(i)(Λ)− τ (i)

)
, (17)

and

imax(Λ)
4
= max argmax

i∈{1,...,L}

(
rd(i)(Λ)− τ (i)

)
, (18)

the largest among the indices i that maximize rd(i)(Λ)−τ (i),
cf. Figure 1.

At any given time, the algorithm works on the polynomial
Λ(x). The inner repeat loop (lines 10–19) computes the
quantities defined in (16)–(18): between lines 19 and 20, we
have

i = imax(Λ), δ = δmax(Λ), d = rd(i)(Λ), (19)

and also

κ = lcf
(
b(i)(x)Λ(x) mod m(i)(x)

)
. (20)

In particular, the very first execution of the repeat loop (with
Λ(x) = 1) yields

i = max argmax
i∈{1,...,L}

(
deg b(i) − τ (i)

)
, (21)

Algorithm 1

Simultaneous Partial-Inverse (SPI) Algorithm

Input: m(i)(x), b(i)(x), τ (i) for i = 1, . . . , L.
Output: Λ(x) as in the problem statement.

1 for i = 1, . . . , L begin
2 Λ(i)(x) := 0
3 d(i) := degm(i)(x)
4 κ(i) := lcf m(i)(x)
5 end
6 Λ(x) := 1
7 δ := maxi∈{1,...,L}

(
degm(i)(x)− τ (i)

)
8 i := 1
9 loop begin

10 repeat
11 if i > 1 begin i := i− 1 end
12 else begin
13 if δ ≤ 0 return Λ(x)
14 i := L
15 δ := δ − 1
16 end
17 d := δ + τ (i)

18 κ := coefficient of xd in
b(i)(x)Λ(x) mod m(i)(x)

19 until κ 6= 0

20 if d < d(i) begin
21 swap (Λ(x),Λ(i)(x))
22 swap (d, d(i))
23 swap (κ, κ(i))
24 δ := d− τ (i)

25 end

26 Λ(x) := κ(i)Λ(x)− κxd−d(i)Λ(i)(x)
27 end

d = deg b(i)(x), and κ = lcf b(i)(x) between lines 19 and
20.

In the special case L = 1, lines 11–17 (excluding line 13)
amount to d := d− 1; in this case, the algorithm reduces to
the partial-inverse algorithm of [1].

The only exit from the algorithm is line 13. Since δ ≥
δmax(Λ), the condition δ ≤ 0 guarantees that Λ(x) satis-
fies (1).

The algorithm maintains the auxiliary polynomials Λ(i)(x),
i = 1, . . . , L, which are all initialized to Λ(i)(x) = 0.
Thereafter, however, Λ(i)(x) become nonzero (after their first
respective execution of lines 21–23) and satisfy

imax(Λ(i)) = i. (22)

The heart of the algorithm is line 26, which cancels the
leading term in

b(i)(x)Λ(x) mod m(i)(x) (23)

6

rd(i)(Λ)− τ (i)

δmax

δmax − 1

-
1 imax 3 4 5 i

Fig. 1. Illustration of (17) and (18) for imax = 2.

(except for the first execution for each index i, see below).
Line 26 is explained by the following lemma.

Lemma 1 (Remainder Decreasing Lemma). Let Λ′(x) and
Λ′′(x) be nonzero polynomials such that i 4

= imax(Λ′) =
imax(Λ′′) and rd(i)(Λ′) ≥ rd(i)(Λ′′). Then δmax(Λ′) ≥
δmax(Λ′′) and the polynomial

Λ(x)
4
= κ′′Λ′(x)− κ′xd

′−d′′Λ′′(x) (24)

with d′
4
= rd(i)(Λ′), κ′ 4

= lcf(b(i)(x)Λ′(x) mod m(i)(x)),
d′′

4
= rd(i)(Λ′′), and κ′′

4
= lcf(b(i)(x)Λ′′(x) mod m(i)(x))

satisfies both
rd(i)(Λ) < rd(i)(Λ′) (25)

and
δmax(Λ) ≤ δmax(Λ′) (26)

and either
imax(Λ) < imax(Λ′), (27)

or
δmax(Λ) < δmax(Λ′). (28)

2

The lemma is proved in Section V-A. It follows from
(25)–(28) that the algorithm makes progress and eventually
terminates.

For each index i ∈ {1, . . . , L}, when line 26 is executed
for the very first time, it is necessarily preceded by the swap
in lines 21–23. In this case, line 26 reduces to

Λ(x) := −
(

lcf m(i)(x)
)
xdegm(i)(x)−rd(i)(Λ′)Λ′(x) (29)

where Λ′(x) is the value of Λ(x) before the swap. It follows,
in particular, that deg Λ(x) > deg Λ′(x).

In any case, we always have

deg(b(i)(x)Λ(x) mod m(i)(x)) < d (30)

after executing line 26.
Finally, we note that every execution of the swap in

lines 21–23 strictly reduces d(i). We also note that the
execution of line 24 results in

δ =

{
δmax(Λ), if Λ(x) 6= 0
degm(i) − τ (i), if Λ(x) = 0,

(31)

where the second case happens only once—the very first
time—for each index i ∈ {1, . . . , L}.

B. Complexity

The complexity of every iteration of lines 9–27 is dom-
inated by the complexity of the inner repeat loop. Let
M(n) denote the complexity of the inner loop, where n 4

=
max degm(i)(x). Due to (25)–(28) (Lemma 1), the algorithm
executes at most O(Ln) iterations of the outer loop. It follows
that the overall complexity of the algorithm is O(LnM(n)).

As for the complexity of line 18, we first note that

deg
(
b(i)(x)Λ(x) mod m(i)(x)

)
≤ d (32)

is guaranteed before every execution of line 18.
In the special case where m(i)(x) = xdegm(i)(x), line 18

amounts to

41 κ := b
(i)
d Λ0 + b

(i)
d−1Λ1 + . . .+ b

(i)
d−νΛν

where ν
4
= deg Λ(x) and where b

(i)
µ

4
= 0 for µ < 0. In

another special case where m(i)(x) = xdegm(i)(x)− 1 for all
i, line 18 becomes

51 κ := b
(i)
d Λ0 + b

(i)
[d−1]Λ1 + . . .+ b

(i)
[d−ν]Λν

with b
(i)
[µ]

4
= b

(i)
µ mod n. In both cases, the computation of

line 18 only requires O(n) operations; the algorithm then has
the complexity O(Ln2), which agrees with the complexity
of the MSSRS algorithms in [3], [4].

IV. APPLICATION TO DECODING INTERLEAVED
REED-SOLOMON CODES

In this section, we briefly demonstrate the application of
the proposed SPI algorithm to decoding interleaved Reed-
Solomon codes beyond half the minimum distance.

A. The Codes

Let F be a finite field, let β0, . . . , βn−1 be n different
elements of F , let m(x)

4
=
∏n−1
`=0 (x − β`), let F [x]/m(x)

be the ring of polynomials modulo m(x), and let ψ be the
evaluation mapping

ψ : F [x]/m(x)→ Fn : a(x) 7→
(
a(β0), . . . , a(βn−1)

)
,

(33)
which is a ring isomorphism. Note that degm(x) = n.

We then define an [n, k] Reed-Solomon code C with
blocklength n and dimension k as the set

C 4
= {c ∈ Fn : degψ−1(c) < k}, (34)

and consider an interleaved Reed-Solomon (IRS) code CIRS
of depth L as a set such that every element of CIRS is a
L × n matrix where every row corresponds to a codeword
taken from C.

B. Channel Model and Error Locator Polynomial

Now, let A ∈ CIRS denote a L × n matrix transmitted
through a channel, and let

Y = A+ E (35)

be the received matrix, where the matrix E ∈ FL×n

represents the error that corrupts A. Moreover, let a(i) denote

the i-th row of A, y(i) the i-th row of Y , and e(i) the i-th
row of E. We then have

y(i) = a(i) + e(i), (36)

for i = 1, . . . , L and therefore

Y (i)(x) = C(i)(x) + E(i)(x) (37)

where Y (i)(x)
4
= ψ−1(y(i)), C(i)(x)

4
= ψ−1(a(i)), and

E(i)(x)
4
= ψ−1(e(i)). Note that degC(i)(x) < k and

degE(i)(x) < degm(x) = n.
Clearly, every C(i)(x) can be decoded independently from

the respective Y (i)(x) by the Berlekamp-Massey or by gcd-
based decoding algorithms (or by the algorithm of [1])
provided that the number of erroneous symbols in the i-th
row is not larger than (n− k)/2.

However, if the errors tend to be concentrated in columns
of E, we may prefer to consider column errors rather than
symbol errors. Indeed, it has been shown in [6], [8]–[10] that
more than (n−k)/2 column errors can be corrected if L > 1.

Let U ⊂ {1, . . . , n} be the set indexing the nonzero
columns of E. We then define, for any E, the error-locator
polynomial

Λe(x)
4
=
∏
j∈U

(x− βj). (38)

It is easy to see that Λe(x) satisfies

E(i)(x)Λe(x) mod m(x) = 0 (39)

for every i ∈ {1, . . . , L}. In consequence, we have

deg
(
Y (i)(x)Λe(x) mod m(x)

)
< k + deg Λe(x) (40)

for every i.

C. Key Theorem

It has been shown in [8]–[10] that the rank of the matrix E
can be relevant for decoding CIRS. In particular, every error
pattern E with less than n−k column errors can be corrected
if the rank of E equals the number |U | of column errors.

Let r denote the rank of the submatrix formed by the
nonzero columns of E, and note that r ≤ |U | = deg Λe(x).
We then have the following Theorem, which is similar to
(but not identical with) Lemma 3 of [8] and generalizes
Theorem 1 of [1].

Theorem 1. If

2|U | ≤ n− k + r − 1, (41)

then the error locator polynomial (38) satisfies

deg
(
Y (i)(x)Λe(x) mod m(x)

)
<
n+ k + r − 1

2
(42)

for all i ∈ {1, . . . , L}. Conversely, for any Y and any E ∈
FL×n (of rank r) and t ∈ R with

|U | ≤ t ≤ n− k + r − 1

2
(43)

if some nonzero Λ(x) ∈ F [x] with deg Λ(x) ≤ t satisfies

deg
(
Y (i)(x)Λ(x) mod m(x)

)
< n− t+ r − 1 (44)

for all i ∈ {1, . . . , L}, then Λ(x) is a multiple of Λe(x). 2

The proof of the direct part of Theorem 1 is easy: from
(40), we have

deg
(
Y (i)(x)Λe(x) mod m(x)

)
< k + |U |, (45)

and (41) implies k + |U | ≤ n+k+r−1
2 . The (much longer)

proof of the converse part is omitted due to the space
constraints of this paper.

In the special case where L = 1, we have r = 1 (if
|U | > 0) and the theorem reduces to Theorem 1 of [1].

In another special case where r = |U |, (41) reduces to
|U | < n − k; in this case, t = r satisfies (43), and (44)
becomes

deg
(
Y (i)(x)Λ(x) mod m(x)

)
< n− 1. (46)

D. Finding the Error Locator With the SPI Algorithm

Condition (40) and Theorem 1 suggest the following
decoding algorithm.

Error Locating Algorithm:
1) Set b(i) = Y (i)(x), m(i) = m(x), and τ (i) = n− 1 for

every i ∈ {1, . . . , L}.
2) Run the SPI algorithm.
3) If the returned polynomial Λ(x) satisfies the condition

deg
(
Y (i)(x)Λ(x) mod m(x)

)
< k + deg Λ(x) (47)

for every i ∈ {1, . . . , L}, then stop.
4) Otherwise, decrease all τ (i) by 1 and continue the SPI

algorithm.
5) Go to 3). 2

Theorem 1 guarantees that this algorithm finds Λ(x) =
γΛe(x) (for some nonzero γ ∈ F) provided that (41) is
satisfied. This guarantee agrees with the guarantee in [8].

In the special case where r = |U |, it follows from (46) that
the algorithm stops at the earliest possible moment (when
(47) is checked for the first time); this special case is very
likely if L ≥ n− k.

Finally, it can be shown that coefficients Y (i)
` of Y (i)(x) =∑

` Y
(i)
` x` with ` < k are irrelevant for finding Λ(x) =

γΛe(x) and can be set to zero. The remaining coefficients
Y

(i)
` are syndromes since C

(i)
` = 0 and Y

(i)
` = E

(i)
` for

` ≥ k.

E. Finish Decoding

Having found an estimate of the error locator polynomial,
decoding can be completed in any standard way [12] or by

C(i)(x) =
Y (i)(x)Λ(x) mod m(x)

Λ(x)
(48)

(as proposed in [13]) or by means of the following proposi-
tion:

Proposition 3. If Λ(x) = γΛe(x) (for some nonzero γ ∈ F)
satisfies deg Λ(x) ≤ n− k, then

C(i)(x) = Y (i)(x) mod m̃(x) (49)

where m̃(x)
4
= m(x)/Λ(x). 2

Proof: Note that m̃(x) has degree deg m̃(x) ≥ k >
degC(i)(x). Note also that m̃(x) divides gcd(E(i)(x),m(x))
and thus m̃(x) divides E(i)(x). We then have

Y (i)(x) mod m̃(x) = C(i)(x) + E(i)(x) mod m̃(x) (50)
= C(i)(x). (51)

2

If the division in (48) (or in Proposition (3), respectively)
does not work out, or if the resulting polynomials C(i)(x) do
not satisfy degC(i)(x) < k, then a decoding failure should
be declared.

V. PROOF OF THE ALGORITHM

A. Proof of Lemma 1

First, δmax(Λ′) ≥ δmax(Λ′′) is obvious from the assump-
tions. From (24), we obtain

r(x)
4
= b(i)(x)Λ(x) mod m(i)(x) (52)

= κ′′r′(x)− κ′xd
′−d′′r′′(x) (53)

with

r′(x)
4
= b(i)(x)Λ′(x) mod m(i)(x) (54)

r′′(x)
4
= b(i)(x)Λ′′(x) mod m(i)(x) (55)

by the natural ring homomorphism F [x]→ F [x]/m(i)(x). It
is then obvious from (53) that deg r(x) < deg r′(x) = d′,
which is (25).

For the remaining proof, we define

δ(`)(Λ)
4
= rd(`)(Λ)− τ (`) (56)

for every ` ∈ {1, . . . , L}. With this notation, we have

δ(i)(Λ) < δ(i)(Λ′) (57)

from (25). We will next show that

δ(j)(Λ) ≤ δ(i)(Λ′) for j < i (58)

and
δ(k)(Λ) < δ(i)(Λ′) for k > i. (59)

Clearly, (57)–(59) together imply both (26) and either (27)
or (28) (or both).

To this end, we first note that d′−d′′ = δ(i)(Λ′)−δ(i)(Λ′′),
and thus

d′ − d′′ + δ(i)(Λ′′) = δ(i)(Λ′). (60)

We then note from (24) that

δ(`)(Λ) ≤ max
{
δ(`)(Λ′), d′ − d′′ + δ(`)(Λ′′)

}
(61)

for every ` ∈ {1, . . . , L}.
Concerning (58), the assumption imax(Λ′) = i implies

δ(j)(Λ′) ≤ δ(i)(Λ′) (62)

for every j < i, and imax(Λ′′) = i implies

δ(j)(Λ′′) ≤ δ(i)(Λ′′). (63)

It then follows from (61)–(63) that for all j < i

δ(j)(Λ) ≤ max
{
δ(i)(Λ′), d′ − d′′ + δ(i)(Λ′′)

}
, (64)

and (58) follows from (60).
Concerning (59), the assumption imax(Λ′) = i implies

δ(k)(Λ′) < δ(i)(Λ′) (65)

for every k > i, and imax(Λ′′) = i implies

δ(k)(Λ′′) < δ(i)(Λ′′). (66)

It then follows from (61), (65), and (66) that for all k > i

δ(k)(Λ) < max
{
δ(i)(Λ′), d′ − d′′ + δ(i)(Λ′′)

}
, (67)

and (59) follows from (60).

B. Assertions

For the detailed proof, we annotate the algorithm of
Section III with some extra variables and some assertions as
shown in Algorithm 2 on the next page. We now prove these
assertions one by one, except that the proof of Assertion (A.1)
is deferred to the end of this section.

Assertion (A.2) is obvious both from the initialization and
from (A.11). Assertion (A.3) is the result of the repeat loop,
as discussed at the beginning of Section III-A.

Assertion (A.4) is obvious. Assertions (A.5)–(A.8) follow
from (A.2)–(A.4), followed by the swap in lines 21–23.

As for (A.9), when b(i)(x) is visited for the very first time
(i.e., the first execution of line 26 for some index i), we
have d = degm(i)(x) and rd(i)(Λ) < d is obvious. For
all later executions of line 26, we have d = rd(i)(Λ) and
d(i) = rd(i)(Λ(i)) before line 26, and rd(i)(Λ) < d after
line 26 follows from Lemma 1.

In order to prove (A.10) and (A.11), we need to understand
how line 26 changes the degree of Λ(x).

Lemma 2. Line 26 changes the degree of Λ(x) only in
iterations where lines 21–24 are executed. 2

The proof is omitted.
If lines 21–24 are executed, then line 26 changes the degree

of Λ(x) to

deg Λ(i)(x) + d− d(i) = deg Λk(x) + ∆k, (68)

which is (A.10). With (A.7), the left-hand side of (68) yields
also (A.11).

It remains to prove (A.1). First, we note that (A.1) clearly
holds when the loop is entered for the first time. But if (A.1)
holds, then Λ(i)(x) in (A.6) satisfies

deg Λ(i)(x) =

L∑
j 6=i

(
degm(j)(x)− d(j)

)
+ degm(i)(x)− d. (69)

It then follows from (68) that Λ(x) after line 26 satisfies

deg Λ(i)(x) + d− d(i) =

L∑
j=1

(
degm(j)(x)− d(j)

)
, (70)

Algorithm 2

Annotated SPI Algorithm

1 for i = 1, . . . , L begin
2 Λ(i)(x) := 0
3 d(i) := degm(i)(x)
4 κ(i) := lcf m(i)(x)
5 end
6 Λ(x) := 1
7 δ := maxi∈{1,...,L}

(
degm(i)(x)− τ (i)

)
8 i := 1

Extra:
k := 0 (E.1)

9 loop begin
Assertions:
deg Λ(x) =

∑L
i=1

(
degm(i)(x)− d(i)

)
(A.1)

deg Λ(x) > deg Λ(i)(x), i = 1, . . . , L (A.2)

10 repeat
11 if i > 1 begin i := i− 1 end
12 else begin
13 if δ ≤ 0 return Λ(x)
14 i := L
15 δ := δ − 1
16 end
17 d := δ + τ (i)

18 κ := coefficient of xd in
b(i)(x)Λ(x) mod m(i)(x)

19 until κ 6= 0

Assertion:
i = imax(Λ), δ = δmax(Λ) ≥ 0 (A.3)

20 if d < d(i) begin
Assertion:
d(i) > d = δ + τ (i) ≥ τ (i) (A.4)
Extras:
k := k + 1, ik

4
= i, Λk(x)

4
= Λ(x),

∆k
4
= d(i) − d, dk

4
= d(i) (E.2)

21 swap (Λ(x),Λ(i)(x))
22 swap (d, d(i))
23 swap (κ, κ(i))
24 δ := d− τ (i)

Assertions:
d > d(i) ≥ τ (i) (A.5)
deg Λ(i)(x) > deg Λ(x) (A.6)
deg Λ(i)(x) > deg Λ(j)(x) for j 6= i (A.7)
imax(Λ(i)) = i, δmax(Λ(i)) ≥ 0 (A.8)

25 end
26 Λ(x) := κ(i)Λ(x)− κxd−d(i)Λ(i)(x)

Assertions:
rd(i)(Λ) < d = δ + τ (i) (A.9)
deg Λ(x) = ∆k + deg Λk(x) (A.10)

> deg Λ(i)(x), i = 1, . . . , L (A.11)

27 end

which is (A.1).
For later use, we also record the following fact from (E.2)

and (A.10):

Proposition 4. The polynomials Λk(x) defined in (E.2)
satisfy deg Λ1(x) = 0 (since Λ1(x) = 1) and

deg Λk(x) > . . . > deg Λ2(x) > deg Λ1(x) (71)

with
deg Λt+1(x) = ∆t + deg Λt(x) (72)

for 1 ≤ t < k. 2

Finally, we note that the algorithm is guaranteed to termi-
nate because every execution of the repeat loop (lines 10–19)
strictly decreases δmax(Λ) or imax(Λ) according to Lemma 1
and the swap in lines 21–23 strictly decreases d(i).

C. Proving the Minimality of the Returned Λ(x)

Let Λ(x) be the polynomial that is returned by the al-
gorithm. It is clear at this point that Λ(x) satisfies (1) for
all i ∈ {1, . . . , L}. It remains to prove that no polynomial
of smaller degree satisfies (1) for all i. The proof involves
several steps.

Let Λ1(x),Λ2(x), . . . ,ΛK(x) be all polynomials Λk(x)
from (E.2) and note that deg Λ(x) > deg ΛK(x).

Lemma 3. Any nonzero Λ̃(x) ∈ F [x] with deg Λ̃(x) <
deg Λ(x) can be uniquely written as

Λ̃(x) =

K∑
k=1

qk(x)Λk(x) (73)

with polynomials qk(x) such that

deg qk(x) < deg Λk+1(x)− deg Λk(x) (74)

for k = 1, . . . ,K − 1, and

deg qK(x) < deg Λ(x)− deg ΛK(x). (75)
2

The lemma is obvious from dividing Λ̃(x) successively by
{ΛK(x),ΛK−1(x), . . . ,Λ1(x) = 1}.

In the following, we will work towards proving that any
nonzero polynomial Λ̃(x) as in Lemma 3 satisfies δmax(Λ̃) ≥
0, which implies that Λ̃(x) cannot not satisfy (1) for all i ∈
{1, . . . , L}.

To this end, we need to study the values of imax(qkΛk)
and δmax(qkΛk). We begin by noting (from (A.3) and (E.2))
that

imax(Λk) = ik and δmax(Λk) ≥ 0 (76)

for all k ∈ {1, . . . ,K}.
From Proposition 4, we have

∆k = deg Λk+1(x)− deg Λk(x) (77)

for k ∈ {1, . . . ,K − 1} and

∆K = deg Λ(x)− deg ΛK(x). (78)

We then obtain from (74)–(78) that

deg qk(x) < ∆k (79)

for all k ∈ {1, . . . ,K}.
On the other hand, we have from (E.2) that

∆k = dk − deg
(
b(ik)(x)Λk(x) mod m(ik)(x)

)
(80)

for k = 1, 2, . . . ,K. We then obtain from (79) and (80) that

deg qk(x) + deg
(
b(ik)(x)Λk(x) mod m(ik)(x)

)
< dk (81)

for k = 1, 2, . . . ,K.

Lemma 4. For any nonzero qk(x), we have

imax(qkΛk) = imax(Λk) (82)

and
δmax(qkΛk) = deg qk(x) + δmax(Λk). (83)

2

Proof: For all i ∈ {1, . . . , L}, we clearly have

rd(i)(qkΛk) ≤ deg qk + rd(i)(Λk). (84)

For ik, however, we have

rd(ik)(qkΛk) = deg qk + rd(ik)(Λk) (85)

from (81) and since dk ≤ degm(ik)(x). The lemma then
follows from imax(Λk) = ik. 2

In the next step, we partition the indices k ∈ {1, . . . ,K}
into sets S1, . . . , SL such that

k ∈ Si ⇐⇒ imax(Λk) = ik = i. (86)

We then write (73) as

Λ̃(x) =

L∑
i=1

(∑
k∈Si

qk(x)Λk(x)
)

(87)

=

L∑
i=1

Λ̃(i)(x) (88)

with
Λ̃(i)(x)

4
=
∑
k∈Si

qk(x)Λk(x). (89)

Lemma 5. If Λ̃(i)(x) is nonzero, then

imax(Λ̃(i)) = i (90)

and
δmax(Λ̃(i)) ≥ 0. (91)

2

The proof is given below. Consider now the mapping

ϕ : Λ̃(x) 7→
(
ϕ1(Λ̃), . . . , ϕL(Λ̃)

)
(92)

where ϕi is the mapping

Λ̃(x) 7→ r(i)(x)
4
= b(i)(x)Λ̃(x) mod m(i)(x) (93)

7→ (r
(i)
0 , . . . , r

(i)

degm(i)(x)−1
) (94)

7→ (r
(i)

τ(i) , . . . , r
(i)

degm(i)(x)−1
). (95)

Note that Λ̃(x) satisfies (1) if and only if Λ̃(x) ∈ kerϕ. Since
ϕ is linear, we have

ϕ(Λ̃) =

L∑
i=1

ϕ(Λ̃(i)). (96)

But (91) implies that ϕ(Λ̃(i)) is nonzero if and only if Λ̃(i)(x)
is nonzero, and (90) implies that the nonzero elements in
the list ϕ(Λ̃(1)), . . . , ϕ(Λ̃(L)) are linearly independent. It
follows that (96) cannot be zero (for any nonzero Λ̃(x) as in
Lemma 3), which means that Λ̃(x) does not satisfy (1) for
all i ∈ {1, . . . , L}.

Proof of Lemma 5:
We clearly have

δmax(Λ̃(i)) ≤ max
k∈Si

δmax(qkΛk). (97)

We show equality in (97) by showing that

rd(i)
(∑
k∈Si

qk(x)Λk(x)
)

= max
k∈Si

rd(i)(qkΛk). (98)

For any k, k′ ∈ Si with k < k′, we have

degm(i)(x) ≥ dk > dk′ ≥ τ (i) (99)

and
rd(i)(qkΛk) ≥ rd(i)(Λk) ≥ dk′ (100)

and

rd(i)(qkΛk) = deg qk(x) + rd(i)(Λk) < dk (101)

from (85) and (81). It follows that

max
k∈Si

rd(i)(qkΛk) = rd(i)(q`Λ`) (102)

with `
4
= min{k ∈ Si : qk(x) 6= 0}, and (98) is obvious.

From (97) and (98), we also have (90), and (91) is obvious
from (98)–(100). 2

VI. CONCLUSION

We introduced the simultaneous partial-inverse problem,
which is similar, but not identical, to the multi-sequence
shift-register synthesis (MSSRS) problem. We proposed a
new algorithm to solve this problem, which is similar, but
not identical, to known algorithms for MSSRS. The proof
of the proposed algorithm does not resemble existing proofs
of MSSRS algorithms. We demonstrated the application of
the algorithm to decoding interleaved Reed-Solomon codes
as in [8], and we anticipate its application to decoding Reed-
Solomon codes beyond half the minimum distance as in [7].

REFERENCES

[1] J.-H. Yu and H.-A. Loeliger, “Reverse Berlekamp-Massey decoding,”
IEEE Int. Symp. on Information Theory, Istanbul, Turkey, July 7–12,
2013.

[2] G.-L. Feng and K. K. Tzeng, “A generalized Euclidean algorithm
for multi-sequence shift-register synthesis,” IEEE Trans. Information
Theory, vol. 35, pp. 584–594, May 1989.

[3] G.-L. Feng and K. K. Tzeng, “A generalization of the Berlekamp-
Massey algorithm for multisequence shift-register synthesis with ap-
plications to decoding cyclic codes,” IEEE Trans. Information Theory,
vol. 37, pp. 1274–1287, Sept. 1991.

[4] G. Schmidt and V. R. Sidorenko, “Multi-sequence linear shift-register
synthesis: the varying length case,” IEEE Int. Symp. on Information
Theory, Seattle, USA, July 9–14, 2006.

[5] J. S. R. Nielsen, “Generalized multi-sequence shift-register synthesis
using module minimisation,” IEEE Int. Symp. on Information Theory,
Istanbul, Turkey, July 7–12, 2013.

[6] G. Schmidt, V. R. Sidorenko, and M.Bossert, “Collaborative decoding
of interleaved Reed-Solomon codes and concatenated codes designs,”
IEEE Trans. Information Theory, vol. 55, pp. 2991–3012, July 2009.

[7] G. Schmidt, V. R. Sidorenko, and M.Bossert, “Decoding Reed-
Solomon codes beyond half the minimum distance using shift-register
synthesis,” IEEE Int. Symp. on Information Theory, Seattle, USA, July
9–14, 2006.

[8] R. M. Roth and P. O. Vontobel, “Coding for combined block-symbol
error correction,” IEEE Trans. Information Theory, vol. 60, pp. 2697–
2713, May 2014.

[9] C. Haslach and A. J. H. Vinck, “A deoding algorithm with restrictions
for array codes,” IEEE Trans. Information Theory, vol. 45, pp. 2339–
2344, Nov. 1999 (and correction in the same publication, vol. 47, p.
470, Jan. 2001).

[10] J. J. Metzner and E. J. Kapturowski, “A general decoding technique
applicable to replicated file disagreement location and concatenated
code decoding,” IEEE Trans. Information Theory, vol. 36, pp. 911–
917, July 1990.

[11] J. L. Massey, “Shift-register synthesis and BCH decoding,” IEEE
Trans. Information Theory, vol. 15, pp. 122–127, May 1969.

[12] R. E. Blahut, Algebraic Codes for Data Transmission. Cambridge
University Press, Cambridge, UK, 2003.

[13] J.-H. Yu and H.-A. Loeliger, “On irreducible polynomial remainder
codes,” IEEE Int. Symp. on Information Theory, Saint Petersburg,
Russia, July 31–Aug. 5, 2011.

