
On Irreducible Polynomial Remainder Codes
Jiun-Hung Yu and Hans-Andrea Loeliger

Department of Information Technology and Electrical Engineering
ETH Zurich, Switzerland

Email: {yu, loeliger}@isi.ee.ethz.ch

Abstract—A general class of polynomial remainder codes is
considered. These codes are very flexible in rate and length and
include Reed-Solomon codes as a special case. In general, the
code symbols of such codes are polynomials of different degree,
which leads to two different notions of weights and of distances.

The notion of an error locator polynomial is generalized to
such codes. A key equation is proposed, from which the error
locator polynomial can be computed by means of a gcd algorithm.
From the error locator polynomial, the transmitted message can
be recovered in two different ways, which may be new even when
specialized to Reed-Solomon codes.

I. INTRODUCTION

Polynomial remainder codes, constructed by means of the
Chinese Remainder Theorem, were proposed by Stone [2],
who also pointed out that these codes include Reed-Solomon
codes [1] as a special case. Variations of Stone’s construction
were studied in [3]–[5]. In [2] and [3], the focus is on
codes with a fixed symbol size, i.e., the moduli are relatively
prime polynomials of the same degree. Mandelbaum proposed
a generalized encoding rule [4] and pointed out that using
moduli of different degrees can be advantageous for burst error
correction [5]. Although the codes in [2]–[5] can, in principle,
correct many random errors, no efficient decoding algorithm
for random errors was proposed in these papers. In 1988,
Shiozaki [6] proposed an efficient decoding algorithm for
Stone’s codes [2] using Euclid’s algorithm, and he also adapted
this algorithm to decode Reed-Solomon codes. However, the
algorithm of [6] is restricted to codes with a fixed symbol size,
i.e., fixed-degree moduli.

There is also a body of work on Chinese remainder codes
over integers, cf. [7], [8]. However, the results of the present
paper are not directly related to that work.

In this paper, we revisit polynomial remainder codes and
propose a practical decoding algorithm. In contrast to most
prior work, we explicitly allow moduli of different de-
grees (i.e., variable symbol sizes) within a codeword. In
consequence, we obtain two different notions of distance—
Hamming distance and degree-weighted distance—and the
corresponding minimum-distance decoding rules. By admit-
ting moduli of different degrees, we can, e.g., lengthen a Reed-
Solomon code by adding some higher-degree symbols without
increasing the size of the underlying field.

The proposed decoding algorithm consists of two steps:
in the first step, an error locator polynomial is computed by
means of a gcd algorithm; in the second step, the message is
recovered, for which we propose two different methods. When

applied to Reed-Solomon codes, the first step is standard but
the second step may be new.

The paper is organized as follows. In Section II, we re-
call the Chinese Remainder Theorem and define irreducible
polynomial remainder codes. In Section III, we introduce two
types of minimum distance decoders as well as basic error
and erasure correction bounds. In Section IV, we introduce
error locator polynomials and we present a key equation as
well as two additional theorems. In Section V, we describe a
modified Euclidean algorithm for solving the key equation.
The resulting practical decoding algorithm is summarized
in Section VI. A extension of this algorithm is outlined in
Section VII. Section VIII concludes the paper.

The theorems and decoding algorithms of this paper are
stated without proofs; for the proofs, we refer to [9].

II. CHINESE REMAINDER THEOREM AND
POLYNOMIAL REMAINDER CODES

Let R = F [x] be the ring of polynomials over some field
F . For any monic polynomial m(x) ∈ F [x], let Rm denote
the ring of polynomials over F of degree less than degm(x)
with addition and multiplication modulo m(x).

We will need the Chinese Remainder Theorem [2] in the
following form.

Theorem 1 (Chinese Remainder Theorem). For some
integer n > 1, let m0(x),m1(x), . . . ,mn−1(x) ∈ R be rel-
atively prime polynomials, and let Mn(x)

4

=
∏n−1
i=0 mi(x).

The mapping

ψ : RMn
→ Rm0

× . . .×Rmn
:

a(x) 7→ ψ(a)
4

=
(

ψ0(a), . . . , ψn−1(a)
)

(1)

with ψi(a)
4

= a(x) mod mi(x) is a ring isomorphism. The
inverse mapping is

ψ−1 : (c0, . . . , cn−1) 7→

n−1
∑

i=0

ci(x)βi(x) mod Mn(x) (2)

with coefficients

βi(x) =
Mn(x)

mi(x)
·

(

Mn(x)

mi(x)

)−1

mod mi(x)

(3)

where
(

b(x)
)−1

mod mi(x)
denotes the inverse of b(x) in Rmi

. 2

We will henceforth assume that m0(x), . . . ,mn−1(x) are
different monic irreducible polynomials in R = F [x].

2011 IEEE International Symposium on Information Theory Proceedings

978-1-4577-0594-6/11/$26.00 ©2011 IEEE 1115

Definition 1. For different monic irreducible polynomials
m0(x), . . . ,mn−1(x) and some fixed integer k, 1 ≤ k ≤ n,
an irreducible polynomial remainder code is the image of ψ
as in (1) of polynomials a(x) of degree less than degMk(x)

with Mk(x)
4

=
∏k−1
i=0 mi(x), i.e.,

C =
{

(c0, . . . , cn−1) = ψ(a) for some a(x) ∈ RMk

}

. (4)
2

Note that such codes are linear (i.e., vector spaces) over F .
The components ci = ψi(a) in (1) and (4) will be called

symbols. Note that each symbol is from a different ring Rmi
;

these rings need not have the same number of elements.
Let N

4

= degMn(x) =
∑n−1
i=0 degmi(x) and K

4

=

degMk(x) =
∑k−1
i=0 degmi(x). The number of codewords

of a code C as in (4) is |F |K . By the rate of the code, we
mean the quantity

1

N
log|F | |C| =

K

N
. (5)

In the special case where all the moduli m0(x), . . . ,mn−1(x)
have the same degree, we have K/N = k/n.

In the special case where all moduli m0(x), . . . ,mn−1(x)
are (different) monic polynomials of degree one, all symbols
are in F and the code is a Reed-Solomon code. By adding
some moduli of degree 2, we can lengthen a Reed-Solomon
code without increasing the size of the underlying field.

We will usually assume that the moduli mi(x) in Defini-
tion 1 satisfy the Ordered-Degree Condition

degm0(x) ≤ degm1(x) ≤ . . . ≤ degmn−1(x). (6)

III. DISTANCES AND ERROR CORRECTION

For any a(x) ∈ RMn
, the Hamming weight of ψ(a) (i.e.,

the number of nonzero symbols ψi(a), 0 ≤ i ≤ n− 1) will
be denoted by wH(ψ(a)). For any a(x), b(x) ∈ RMn

, the
Hamming distance between ψ(a) and ψ(b) will be denoted by
dH(ψ(a), ψ(b))

4

= wH(ψ(a)−ψ(b)). The minimum Hamming
distance of a code C will be denoted by dminH(C).

Theorem 2. Let C be a code as in Definition 1 satisfying (6).
Then the Hamming weight of any nonzero codeword ψ(a)
(a(x) ∈ RMk

, a(x) 6= 0) satisfies

wH(ψ(a)) ≥ n− k + 1 (7)

and
dminH(C) ≥ n− k + 1. (8)

2

Definition 2. For any a(x) ∈ RMn
, the degree weight of

ψ(a) =
(

ψ0(a), . . . , ψn−1(a)
)

is

wD(ψ(a))
4

=
∑

i:ψi(a)6=0

degmi(x). (9)

For any a(x), b(x) ∈ RMn
, the degree-weighted distance

between ψ(a) and ψ(b) is

dD(ψ(a), ψ(b))
4

= wD(ψ(a) − ψ(b)). (10)
2

Moreover, the minimum degree-weighted distance of an irre-
ducible polynomial remainder code C is

dminD(C)
4

= min
c,c′∈C:c6=c′

dD(c, c′). (11)

We then have the following analog of Theorem 2:

Theorem 3. Let C be a code as in Definition 1. Then the
degree weight of any nonzero codeword ψ(a) (a(x) ∈ RMk

,
a(x) 6= 0) satisfies

wD(ψ(a)) ≥ N −K + 1 (12)

and

dminD(C) ≥ N −K + 1. (13)

2

In the special case where the moduli m0(x), . . . ,mn−1(x)
all have the same degree, the two triples (N,K,dminD) and
(n, k,dminH) coincide up to a scale factor.

Let C be a code as in Definition 1 that satisfies (6). The
receiver sees y = c + e, where c ∈ C is the transmitted
codeword and e is an error pattern. A minimum Hamming
distance decoder is a decoder that produces

ĉ = argmin
c∈C

dH(c, y). (14)

A minimum degree-weighted distance decoder is a decoder
that produces

ĉ = argmin
c∈C

dD(c, y). (15)

Theorem 4 (Basic Error Correction Bounds). If

wH(e) ≤ tH
4

=

⌊

n− k

2

⌋

, (16)

then the rule (14) produces ĉ = c. If

wD(e) ≤ tD
4

=

⌊

N −K

2

⌋

, (17)

then the rule (15) produces ĉ = c. 2

In general, the decoding rules (14) and (15) produce different
estimates ĉ [9].

For erasures-only decoding, we have

Theorem 5 (Erasures Correction Bound). Let C be a code
as in Definition 1. For e = (e0, . . . , en−1), assume that the
indices i where ei 6= 0 are known. If

wD(e) ≤ N −K, (18)

then the message polynomial a(x) ∈ RMk
can be recon-

structed from y = ψ(a) + e. 2

1116

IV. ERROR LOCATOR POLYNOMIAL AND
ERASURES-ONLY DECODING

Decoding Reed-Solomon codes can be reduced to solving
a key equation that involves an error locator polynomial [11].
We now propose such an approach for polynomial remainder
codes.

Let C be a code as in Definition 1 satisfying (6). The
receiver sees y = c + e, where c ∈ C is the transmitted
codeword and e is an error pattern. Let Y (x) = a(x) +E(x)
denote the pre-image ψ−1(y) of y, where a(x) = ψ−1(c) is
the transmitted message polynomial and where E(x) denotes
the pre-image ψ−1(e) of the error e.

Definition 3. Λ(x) ∈ F [x] is an error locator polynomial if

Λ(x) mod m`(x) = 0 if and only if e` 6= 0 (19)

for 0 ≤ ` ≤ n− 1. 2

Clearly, the polynomial

Λe(x)
4

=
∏

`:e` 6=0

m`(x) (20)

of deg Λe(x) = wD(e) is the unique monic error locator
polynomial of the smallest degree.

Recall that Mn(x)
4

=
∏n−1
i=0 mi(x).

Theorem 6 (Key Equation). The error locator polynomial
(20) satisfies

A(x)Mn(x) = Λe(x)E(x) (21)

for some polynomial A(x) ∈ F [x] of degree smaller than
deg Λe(x). Conversely, if some polynomial G(x) ∈ F [x]
satisfies

A(x)Mn(x) = G(x)E(x) (22)

for some A(x) ∈ F [x], then G(x) is a multiple of Λe(x). 2

Theorem 7 (Error Locator-based Interpolation). If G(x)
is a multiple of Λe(x) with

degG(x) ≤ N −K, (23)

then
Y (x)G(x) mod Mn(x) = a(x)G(x) (24)

2

Note that (24) amounts to a closed formula for computing a(x)
from Y (x) and G(x) by dividing the left-hand side of (24)
by G(x). In contrast to most other statements in this paper,
Theorem 7 appears to be new even when specialized to Reed-
Solomon codes (where we usually have Mn(x) = xn − 1).

Let Nzero(G) denote the number of indices
i ∈ {0, . . . , n− 1} such that G(x) mod mi(x) = 0.
Note that Nzero(Λe) = wH(e).

Recall the definition of tH from (16).

Theorem 8 (Error Locator Test). Let y = ψ(a)+e as above.
For some polynomial G(x) and

Z(x)
4

= Y (x)G(x) mod Mn(x), (25)

assume that the following conditions are satisfied:
1) wH(e) ≤ tH
2) Nzero(G) ≤ tH and degG(x) ≤

∑n−1
`=n−tH

degm`(x).
3) G(x) divides Z(x)
4) degZ(x) − degG(x) < K.

Then G(x) is a multiple of Λe(x) and Z(x) = a(x)G(x). 2

Note that the conditions in the theorem are satisfied for
G(x) = Λe(x).

V. COMPUTING THE ERROR LOCATOR POLYNOMIAL
BY AN EXTENDED GCD ALGORITHM

Let gcd(a, b) denote the greatest common divisor (gcd) of
a, b ∈ R = F [x], not both zero.

For Reed-Solomon codes, the use of an extended gcd
algorithm to compute an error locator polynomial is standard
[10], [11]. We now adapt this approach to solve our key
equation (22). We prefer the following gcd algorithm (but
Euclid’s algorithm could also be adapted to our purpose).

A. An Extended GCD Algorithm

In this subsection, we assume that E(x) is fully known; in
the next subsection, we state the modifications that are required
when E(x) is only partially known.

Extended GCD Algorithm
Input: Mn(x) and E(x) with degMn(x) > degE(x).
Output: polynomials r̃(x), s(x), t(x) ∈ F [x] where r̃(x) =
γ gcd(Mn(x), E(x)) for some γ ∈ F and where s(x) and
t(x) satisfy s(x) ·Mn(x) + t(x) · E(x) = 0.

1 r(x) := Mn(x)
2 r̃(x) := E(x)
3 s(x) := 1
4 t(x) := 0
5 s̃(x) := 0
6 t̃(x) := 1
7 loop begin
8 if deg r(x) < deg r̃(x) begin
9 (r(x), r̃(x)) := (r̃(x), r(x))

10 (s(x), s̃(x)) := (s̃(x), s(x))
11 (t(x), t̃(x)) := (t̃(x), t(x))
12 end
13 i := deg r(x)
14 j := deg r̃(x)
15 while i ≥ j begin
16 q(x) := ri

r̃j
xi−j

17 r(x) := r(x) − q(x) · r̃(x)
18 s(x) := s(x) − q(x) · s̃(x)
19 t(x) := t(x) − q(x) · t̃(x)
20 i := deg r(x)
21 end
22 if r(x) = 0 begin
23 return r̃(x), s(x), t(x)
24 end
25 end

2

1117

In this algorithm, ri ∈ F denotes the coefficient of xi in
r(x) and r̃j ∈ F denotes the coefficient of xj in r̃(x). For
polynomials over F = GF (2), the scalar division in line 16
disappears.

The standard loop invariant [11] holds also for this gcd
algorithm:

Theorem 9 (GCD Loop Invariant). The condition

r(x) = s(x) ·Mn(x) + t(x) · E(x) (26)

holds throughout the algorithm (as stated above) and the
condition

degMn(x) = deg r̃(x) + deg t(x) (27)

holds between lines 21 and 22. 2

The algorithm terminates when r(x) = 0 and returns
r̃(x), s(x), and t(x). Since Mn(x) consists of monic irre-
ducible polynomials m0(x), . . . ,mn−1(x), we then have

r̃(x) = γ gcd(Mn(x), E(x)) (28)

= γ
∏

`:e`=0

m`(x) (29)

= γ
Mn(x)

Λe(x)
(30)

(for some nonzero γ ∈ F) with deg r̃(x) = degMn(x) −
deg Λe(x). It then follows from (27) that

deg t(x) = deg Λe(x). (31)

With r(x) = 0, (26) becomes

s(x) ·Mn(x) + t(x) · E(x) = 0. (32)

We then conclude from the second part of Theorem 6 that
t(x) is a multiple of Λe(x). Finally, we conclude from (31)
that t(x) = γ̃Λe(x) for some scalar γ̃ ∈ F .

B. Modifications for Partially Known E(x)

Recall that Y (x) = a(x)+E(x) is the pre-image ψ−1(y) of
the received message y where E(x) =

∑N−1
`=0 E` x

` is the pre-
image of the error pattern e. Since deg a(x) < K, the receiver
knows the coefficients EK , EK+1, . . . , EN−1 of E(x), but not
E0, . . . , EK−1. With the following modifications, the extended
gcd algorithm as described above can still be used to compute
the error locator polynomials Λe(x).

Let

EU (x)
4

=
N−K−1

∑

`=0

EK+` x
` (33)

be the known upper part of E(x) and let

MU (x)
4

=

N−K
∑

`=0

(Mn)K+` x
` (34)

be the corresponding upper part of Mn(x) =
∑N

`=0(Mn)` x
`.

Modified Extended GCD Algorithm
Input: MU (x) and EU (x) with degMU (x) > degEU (x).
Output: s(x) and t(x), cf. Theorem 10 below.

The algorithm is the same as the extended gcd algorithm of
Section V-A except for the following changes:

• Line 1: r(x) := MU (x).
• Line 2: r̃(x) := EU (x).
• Line 22: if deg r(x) < deg t(x) begin 2

Theorem 10. If wD(e) (= deg Λe(x)) satisfies

deg Λe(x) ≤ (N −K)/2, (35)

then the modified gcd algorithm of this section returns the
same polynomials s(x) and t(x) (after the same number of
iterations) as the gcd algorithm of Section V-A. 2

We thus obtain Λe(x) = t(x)/γ̃ for some scalar γ̃ ∈ F as in
Section V-A.

The computation of the polynomials s(x) and s̃(x) may
actually be unnecessary (see Section VI). In consequence, lines
3, 5, 10, and 18 of the gcd algorithm may be deleted.

VI. SUMMARY OF DECODING ALGORITHM

Let us summarize the proposed decoding algorithm and add
some details.

The receiver sees y = c+ e where c ∈ C is the transmitted
codeword and e is an error pattern. We thus have Y (x) =
a(x) + E(x) where Y (x), a(x), and E(x) are the images of
y, c, and e under ψ−1 and where deg a(x) < K. The first step
of our decoding algorithm is to compute Y (x) = ψ−1(y). If
deg Y (x) < K, we conclude E(x) = 0 and a(x) = Y (x).

For erasures-only decoding (i.e., if the positions of the
errors are known), we can directly compute the error locator
polynomial Λe(x) (20) and compute a(x) from (24) with
G(x) = Λe(x). The only condition for this to work is
deg Λe(x) ≤ N −K.

Otherwise (i.e., for decoding errors in unknown positions),
we form

EU (x) =

N−K−1
∑

`=0

YK+` x
`. (36)

We then run the modified gcd algorithm of Section V-B,
which yields the error locator polynomial Λe(x) provided that
wD(e) ≤ (N −K)/2. (If the polynomial t(x) returned by the
gcd algorithm has degree larger than (N −K)/2, we declare
a decoding failure.)

From Λe(x), we can compute a(x) from (24) with G(x) =
Λe(x). Alternatively, we can compute E(x) from (32) and
obtain a(x) = Y (x) − E(x). In the special case of Reed-
Solomon codes, both methods do not seem to be readily
available in the literature and are perhaps new.

The described algorithm is guaranteed to correct all errors
e with wD(e) ≤ tD (17). If the code satisfies the Ordered-
Degree Condition (6) as well as the additional condition

degmk(x) = · · · = degmn−1(x), (37)

then the algorithm is guaranteed to correct also all errors e
with wH(e) ≤ tH (16).

1118

VII. AN EXTENSION

Assume that the code satisfies the Ordered-Degree Condi-
tion (6) but not the additional condition (37). In this case, we
can still correct all errors e with wH(e) ≤ tH by the following
procedure, which, however, is practical only in special cases.

Decoder with List of Special Error Positions
First, run the gcd decoder of the previous section. If it
succeeds, stop. Otherwise, let SΛ be a precomputed list of
candidate error locator polynomials G(x) with Nzero(G) ≤ tH
and degG(x) > (N−K)/2. Check if any G(x) ∈ SΛ satisfies
all conditions of Theorem 8. If such a polynomial G(x) exists,
we conclude that it is a multiple of the error locator polynomial
and we compute a(x) from (24). 2

Such a decoder corrects all error patterns e with either
wD(e) ≤ tD or wH(e) ≤ tH.

VIII. CONCLUSION

We have revisited polynomial remainder codes explicitly al-
lowing moduli of different degrees, i.e., variable symbol sizes
within a codeword. In consequence, we have two different
notions of distance—Hamming distance and degree-weighted
distance—and the corresponding minimum-distance decoding
rules. We have adapted gcd-based decoding for such codes,
which is guaranteed to correct all error patterns of degree-
weight less than half the minimum degree-weighted distance.
(We also give an extension that allows to correct up to half
the minimum Hamming distance, but this extension may not
be practical.)

As second step of the decoding algorithm (or as main step
in erasures-only decoding), we have proposed two different
methods to recover the message from the error locator poly-
nomial. These methods are nonstandard (and perhaps new)
even when specialized to Reed-Solomon codes.

REFERENCES

[1] I. S. Reed and G. Solomon, “Polynominal codes over certain finite
fields,” J. SIAM, vol. 8, pp. 300–304, Oct. 1962.

[2] J. J. Stone, “Multiple-burst error correction with the Chinese Remainder
Theorem,” J. SIAM, vol. 11, pp. 74–81, Mar. 1963.

[3] D. C. Bossen and S. S. Yau, “Redundant residue polynomial codes,”
Information and Control, vol. 13, pp. 597–618, 1968.

[4] D. Mandelbaum, “A method of coding for multiple errors,” IEEE Trans.
Information Theory, vol. 14, pp. 518–621, May 1968.

[5] D. Mandelbaum, “On efficient burst correcting residue polynomial
codes,” Information and Control, vol. 16, pp. 319–330, 1970.

[6] A. Shiozaki, “Decoding of redundant residue polynomial codes using
Euclid’s algorithm,” IEEE Trans. Information Theory, vol. 34, pp. 1351–
1354, Sep. 1988.

[7] O. Goldreich, D. Ron, and M. Sudan, “Chinese remaindering with
errors,” IEEE Trans. Information Theory, vol. 46, pp. 1330–1338, July
2000.

[8] V. Guruswami, A. Sahai, and M. Sudan, “Soft-decision decoding of Chi-
nese remainder codes,” Proc. 41st IEEE Symp. Foundations Computer
Science, Redondo Beach, CA, 2000, pp. 159–168.

[9] J.-H. Yu and H.-A. Loeliger, “On polynomial remainder codes,” to be
submitted to IEEE Trans. Information Theory.

[10] Y. Sugiyama, M. Kasahara, S. Hirasawa, and T. Namekawa, “A method
for solving key equation for decoding Goppa codes,” Information and
Control, vol. 27, pp. 87–99, 1975.

[11] R. M. Roth, Introduction to Coding Theory. New York: Cambridge
University Press, 2006.

1119

