
Decoding of Interleaved Reed-Solomon Codes
via Simultaneous Partial Inverses

Jiun-Hung Yu and Hans-Andrea Loeliger
Department of Information Technology and Electrical Engineering

ETH Zurich, Switzerland
Email: {yu, loeliger}@isi.ee.ethz.ch

Abstract—The partial-inverse approach is further developed to
decoding interleaved Reed-Solomon codes and subfield-evaluation
codes beyond half the minimum distance. The resulting decoding
algorithm is new, and its decoding capability is shown to be state-
of-the-art.

I. INTRODUCTION

The partial-inverse approach to decoding Reed-Solomon
codes and generalizations thereof was introduced in [1]. In
this paper, we continue the extension of this approach to
interleaved Reed-Solomon codes that was begun in [2].

Let F = Fq be a finite field with q elements. We will
consider codes where codewords are L × n arrays over F
such that each row is a codeword in the same (n, k) Reed-
Solomon code over F . We will only consider the correction of
column errors, and we will not distinguish between columns
with a single error and columns with many errors.

The Reed-Solomon code for each row will be defined as
follows. Let β0, . . . , βn−1 be n different elements of F . The
code is then defined as the set

{
(
a(β0), . . . , a(βn−1)

)
: a(x) ∈ F [x] with deg a(x) < k}.

(1)
Note that such codes include both shortened and singly-
extended Reed-Solomon codes.

It is well known [3]–[5] that such interleaved Reed-Solomon
codes can equivalently be viewed as shortened Reed-Solomon
codes over FqL simply by replacing F [x] = Fq[x] in (1) by
FqL [x] while the evaluation points β0, . . . , βn−1 remain in Fq .
Note that symbol errors in FqL correspond to column errors
in the array code.

Decoding such subfield-evaluation codes beyond the
Guruswami-Sudan decoding radius [6] was pioneered in [3],
[4], [7], [8], and decoding of interleaved Reed-Solomon codes
has been much advanced in [5], [9]–[12]. Note that some of
these papers use list-decoding algorithms [4], [6], [8] while
others use unique-decoding algorithms that return at most one
codeword [3], [5], [7], [9]–[12]. The best unique-decoding
algorithms can now correct t errors (column errors or FqL -
symbol errors) with t up to the bound

t ≤ L

L+ 1

(
n− k

)
(2)

with high probability if q is large [5], [7].
In [2], we began to study such codes from a partial-inverse

perspective; we outlined a corresponding new unique-decoding

algorithm and presented a new bound for the guaranteed error
correction (repeated below as Theorem 2) patterned after a
similar bound (for a different decoding algorithm) in [12].

In the present paper, we develop this approach further. In
particular, we state and we analyze the new decoding algorithm
more explicitly, and we complement the mentioned bound for
guaranteed error correction by the following bound on the
probability of decoding failure for random errors.

Theorem 1 (Probability of Decoding Failure). Assume
L > 1. If the t nonzero columns of the error pattern are
uniformly distributed over FLq \ {0}, then the probability Pf
that the proposed decoding algorithm fails is bounded by

Pf <
q−L(n−k)+(L+1)t

q − 1
(3)
2

The proof is given in Section VII.
Note that (3) implies that errors can be corrected (with high

probability, if q is large) up to the bound (2).
The bound (3) almost agrees with, but is strictly better

than, the bound of [5], and it beats the bound of [7]. The
small, but positive, advantage over the bound of [5] appears to
depend essentially on the partial-inverse approach. Moreover,
the proof of Theorem 1 is shorter than the proof of the bound
in [5].

We will see that the proposed decoding algorithm is very
efficient even if L is large. In addition (and in contrast to the
prior literature [5], [12]), the set {β0, . . . , βn−1} of evaluation
points will be allowed to contain 0.

The paper is structured as follows. The partial-inverse algo-
rithm from [2] is briefly recalled in Section II. The required
basics about the codes are summarized in Section III. The
new decoding algorithm is stated in Section IV. Guaranteed
error correction is addressed in Sections V and VI, and
the correction of random errors is addressed in Sections VI
and VII.

II. THE SIMULTANEOUS PARTIAL-INVERSE PROBLEM AND
THE SPI ALGORITHM

We begin by recalling the following material from [2].

Simultaneous Partial-Inverse (SPI) Problem: For i =
1, 2, . . . , L, let b(i)(x) and m(i)(x) be nonzero polynomials
over some field with deg b(i)(x) < degm(i)(x). The problem

ISIT 2015

is to find a nonzero polynomial Λ(x) of the smallest degree
such that

deg
(
b(i)(x)Λ(x) mod m(i)(x)

)
< τ (i) (4)

for given τ (i) ∈ Z with 1 ≤ τ (i) ≤ degm(i)(x). 2

Proposition 1 (Uniqueness and Degree Bound). The solution
Λ(x) of the SPI Problem is unique (up to a scale factor) and
satisfies

deg Λ(x) ≤
L∑
i=1

(
degm(i)(x)− τ (i)

)
. (5)

2

Proposition 1 has no counterpart in the multi-sequence shift-
register synthesis setting of [5]. The uniqueness of the solution
will be used in the proof of Theorem 1.

As shown in [2], the SPI problem can be solved by
the following algorithm, which we will later modify into a
decoding algorithm.

Simultaneous Partial-Inverse (SPI) Algorithm

Input: m(i)(x), b(i)(x), τ (i) for i = 1, . . . , L.
Output: Λ(x) as in the problem statement.

1 for i = 1, . . . , L begin
2 Λ(i)(x) := 0
3 d(i) := degm(i)(x)
4 κ(i) := leading coefficient of m(i)(x)
5 end
6 Λ(x) := 1
7 δ := maxi∈{1,...,L}

(
degm(i)(x)− τ (i)

)
8 i := 1
9 loop begin

10 repeat
11 if i > 1 begin i := i− 1 end
12 else begin
13 if δ ≤ 0 return Λ(x)
14 i := L
15 δ := δ − 1
16 end
17 d := δ + τ (i)

18 κ := coefficient of xd in
b(i)(x)Λ(x) mod m(i)(x)

19 until κ 6= 0
20 if d < d(i) begin
21 swap (Λ(x),Λ(i)(x))
22 swap (d, d(i))
23 swap (κ, κ(i))
24 δ := d− τ (i)
25 end
26 Λ(x) := κ(i)Λ(x)− κxd−d(i)Λ(i)(x)
27 end

In the special case where m(i)(x) = xdegm
(i)(x), line 18

amounts to

41 κ := b
(i)
d Λ0 + b

(i)
d−1Λ1 + . . .+ b

(i)
d−νΛν

where ν 4
= deg Λ(x) and where b(i)µ

4
= 0 for µ < 0. In another

special case where m(i)(x) = xdegm
(i)(x)−1 for all i, line 18

becomes

51 κ := b
(i)
d Λ0 + b

(i)
[d−1]Λ1 + . . .+ b

(i)
[d−ν]Λν

with b(i)[µ]

4
= b

(i)
µ mod n. In both cases, the computation of line 18

only requires O(n) operations, where n 4
= max degm(i)(x),

and the algorithm has the complexity O(Ln2), cf. [2].

III. ABOUT THE CODES

We will need the following (more or less standard) concepts.

A. Error Support and Error Locator Polynomial

Recall from Section I that we have an array code over F
where each row is a codeword from a Reed-Solomon code
as in (1). Let Y = C + E ∈ FL×n be the received word
where C ∈ FL×n is the transmitted (array-) codeword and
E ∈ FL×n is the error pattern. The columns of codewords
and error patterns will be indexed beginning with zero as in
E = (e0, . . . , en−1). Let UE ⊂ {0, . . . , n− 1} be the index
set of the nonzero columns of E, i.e.,

UE
4
=
{
` ∈ {0, . . . , n− 1} : e` 6= 0

}
. (6)

The error-locator polynomial is then defined as

ΛE(x)
4
=
∏
j∈UE

(x− βj). (7)

Note that

|UE | = deg ΛE(x) = number of column errors. (8)

B. Evaluation Isomorphism

Let m(x)
4
=
∏n−1
`=0 (x−β`). Let ψ be the evaluation mapping

ψ : F [x]/m(x)→ Fn : a(x) 7→
(
a(β0), . . . , a(βn−1)

)
, (9)

which is a ring isomorphism. The row code (1) can then be
described as

{c ∈ Fn : degψ−1(c) < k}. (10)

In the special case where α ∈ F is a primitive n-th root
of unity and β` = α`, ` = 0, . . . , n − 1, the mapping (9) is
a discrete Fourier transform [15] and both ψ and ψ−1 may
be computed by fast Fourier transform algorithms. In general,
ψ−1 may be computed by Lagrange interpolation or according
to the Chinese remainder theorem, cf., e.g., [13], [14].

C. Notation for Individual Rows

Let y(i) denote the i-th row of the matrix Y , let c(i) be the
i-th row of C, and let e(i) be the i-th row of E. We then have
y(i) = c(i) + e(i), i = 1, . . . , L, and therefore

Y (i)(x) = a(i)(x) + E(i)(x) (11)

where Y (i)(x)
4
= ψ−1(y(i)), a(i)(x)

4
= ψ−1(c(i)), and

E(i)(x)
4
= ψ−1(e(i)). Note that degE(i)(x) < degm(x) = n

and deg a(i)(x) < k.

D. Error Locator Equation

With all this notation, we have

deg
(
Y (i)(x)ΛE(x) mod m(x)

)
< k + deg ΛE(x) (12)

for i = 1, . . . , L, since E(i)(x)ΛE(x) mod m(x) = 0.

IV. THE NEW DECODING ALGORITHM

A. Locating the Errors

Eq. (12) makes it plausible that the error locator polynomial
ΛE(x) may be found by the following algorithm.

Outline of Error-Locating Algorithm [2]:
1) Run the SPI algorithm of Section II with b(i)(x) =

Y (i)(x), m(i)(x) = m(x), and τ (i) = n − 1 for
i ∈ {1, . . . , L}.

2) If the returned polynomial Λ(x) satisfies the condition

deg
(
Y (i)(x)Λ(x) mod m(x)

)
< k + deg Λ(x) (13)

for every i ∈ {1, . . . , L}, then stop.
3) Otherwise, decrease all τ (i) by 1 and continue the SPI

algorithm.
4) Go to 2). 2

The test (13) actually requires no extra computations.
Indeed, this error location method can be implemented by
modifying the SPI algorithm of Section II as follows (which
was not spelled out in [2]).

SPI Error Locating Algorithm:

Input: Y (i)(x), i = 1, . . . , L.
Output: nonzero Λ(x) ∈ F [x], a candidate for the error
locator ΛE(x) (up to a scale factor).

The algorithm is the same as the SPI algorithm of Section II
(with b(i)(x) = Y (i)(x), m(i) = m(x), and τ (i) = n − 1),
except that line 13 is replaced by following lines:

61 if δ ≤ 0 begin
62 if d ≤ deg Λ(x) + k return Λ(x)
63 else begin
64 δ := δ + 1
65 for j = 1, . . . , L begin τ (j) := τ (j) − 1 end
66 end
67 end

Note that line 62 suffices to check (13) for all i. Note also
that τ (1) = . . . = τ (L) throughout the algorithm.

A sufficient condition for the algorithm to return Λ(x) =
γΛE(x) (for some nonzero γ ∈ F) is given by Theorem 3 in
Section V.

B. Decoding

Putting things together, we have the following decoding
algorithm.

1) Compute Y (i)(x) = ψ−1(y(i)) for all i.

2) Run the SPI error locating algorithm to obtain a candi-
date Λ(x) for the error locator polynomial.

3) Complete decoding in any standard way [15], or by
means of

a(i)(x) =
Y (i)(x)Λ(x) mod m(x)

Λ(x)
(14)

as proposed in [13], or by

a(i)(x) = Y (i)(x) mod m̃(x) (15)

with m̃(x)
4
= m(x)/Λ(x) as proposed in [2].

4) If the user data is in the codeword C (the “time
domain”), rather than in the polynomials a(i)(x) (the
“frequency domain”), the additional computation of
ψ
(
a(i)(x)

)
, i = 1, . . . , L, is required.

If the division in (14) does not work out, or if Λ(x) does
not divide m(x), or if the resulting polynomials a(i)(x) do
not satisfy deg a(i)(x) < k, then a decoding failure should be
declared.

V. GUARANTEED ERROR CORRECTION

Recall the error support set UE (6) and let rE be the rank
of the submatrix formed by the nonzero columns of E.

The justification of the SPI error locating algorithm hinges
on the following theorem from [2].

Theorem 2. If

2|UE | ≤ n− k + rE − 1, (16)

then the error locator polynomial (7) satisfies

deg
(
Y (i)(x)ΛE(x) mod m(x)

)
<
n+ k + rE − 1

2
(17)

for all i ∈ {1, . . . , L}. Conversely, for any Y and any E ∈
FL×n (of rank rE) and t ∈ R with

|UE | ≤ t ≤
n− k + rE − 1

2
(18)

if some nonzero Λ(x) ∈ F [x] with deg Λ(x) ≤ t satisfies

deg
(
Y (i)(x)Λ(x) mod m(x)

)
< n− t+ rE − 1 (19)

for all i ∈ {1, . . . , L}, then Λ(x) is a multiple of ΛE(x). 2

The direct part (17) is an immediate consequence of (12),
but the converse part is not trivial.

We now state the consequences of Theorem 2 more carefully
than outlined in [2].

Corollary 1. Assume that (16) holds. If some nonzero Λ(x) ∈
F [x] with deg Λ(x) ≤ |UE | satisfies

deg
(
Y (i)(x)Λ(x) mod m(x)

)
< k + |UE | (20)

for all i ∈ {1, . . . , L}, then Λ(x) = γΛE(x) for some nonzero
γ ∈ F . 2

Proof: Eq. (16) can be rewritten as

k + |UE | ≤ n− |UE |+ rE − 1. (21)

A polynomial Λ(x) satisfying (20) thus satisfies (19) with t =
|UE |, and thus Λ(x) is a multiple of ΛE(x). But deg Λ(x) ≤
|UE | = deg ΛE(x), and Λ(x) = γΛE(x) follows. 2

Lemma 1 (SPI Error Location). If ΛE(x) is a solution of
the SPI problem

deg
(
Y (i)(x)Λ(x) mod m(x)

)
< k + |UE | (22)

for all i ∈ {1, . . . , L}, then the SPI error locating algorithm
stops with τ (i) ≥ k + |UE | and returns Λ(x) = γΛE(x) for
some nonzero γ ∈ F . 2

Proof: If ΛE(x) is a solution of the SPI problem (22),
then, because of (12), the SPI error locating algorithm stops
with τ (i) ≥ k + |UE | and deg Λ(x) ≤ deg ΛE(x). Because
of (13), Λ(x) satisfies (22), which is a contradiction unless
deg Λ(x) = deg ΛE(x). 2

Theorem 3 (Guaranteed Error Correction). If

2|UE | < n− k + rE , (23)

then the SPI error locating algorithm of Section IV-A stops
with τ (i) ≥ k + |UE | and returns Λ(x) = γΛE(x) for some
nonzero γ ∈ F . 2

Proof: If (23) holds, then by Corollary 1, ΛE(x) is a solution
of the SPI problem (22) for i ∈ {1, . . . , L}, and the theorem
follows from Lemma 1. 2

The error correction capability guaranteed by Theorem 3
agrees with the guarantee in [12], which improves on Theo-
rem 2 of [5] by a margin of rE/2. Note that the rank rE is
not used in the algorithm and need not be computed.

VI. THE FULL-RANK CASE

It is instructive to consider the special case where rE =
|UE |, which is very likely if |UE | ≤ L, cf. Proposition 3
below. In this case, (23) reduces to

|UE | < n− k, (24)

and we have the following improvement on Theorem 3.

Proposition 2 (Full-Rank-Error Location). If

rE = |UE | < n− k, (25)

the SPI error locating algorithm of Section IV-A stops with
τ (j) = n−1 (i.e., when (13) is checked for the first time) and
returns Λ(x) = γΛE(x) for some nonzero γ ∈ F . 2

Proof: Assume that (25) holds and consider the very first
test of (13), where τ (i) = n− 1, i = 1, . . . , L. We then have

deg
(
Y (i)(x)Λ(x) mod m(x)

)
< n− 1 (26)

with deg Λ(x) ≤ deg ΛE(x) = |UE |. Then (19) is satisfied
with t = |UE |, and it follows that Λ(x) = γΛE(x). Thus
Λ(x) passes the test (13) and the algorithm stops. 2

Proposition 3 (Full-Rank Probability). If |UE | ≤ L and if
the |UE | nonzero columns of the L×n matrix E are uniformly
and independently distributed over FL \ {0}, then

Pr
(
rE 6= |UE |

)
<
q−L+|UE |

q − 1
(27)
2

The proof is omitted.
Propositions 2 and 3 show, in particular, that the SPI error

locating algorithm can be very efficient even if L is large.
For |UE | ≤ L, both (27) and (3) apply. In general, the

bound (27) is much weaker than (3), but the bounds agree
in the special case where |UE | = n − k − 1; in this special
case, these bounds agree also with the bounds in [9], [11],
[12] (where different decoding algorithms are used).

VII. PROOF OF THEOREM 1
We now consider random errors without the constraint

|UE | ≤ L. Our main result here is Theorem 1, which was
stated in Section I and will now be proved.

Let U be an arbitrary, but fixed, subset of {0, . . . , n− 1},
and assume that the |U | nonzero columns of the L×n matrix E
are uniformly and independently distributed over FL\{0}. We
will prove the following: the probability of the event that the
SPI error location algorithm of Section IV-A fails is bounded
by

Pf <
q−L(n−k)+(L+1)|U |

q − 1
(28)

for L > 1. Note that this bound depends only on |U | (and not
otherwise on U) and thus implies Theorem 1.

Recall the polynomial E(i)(x) from (11). The proof starts
with the following fact, which is an immediate consequence
of Lemma 1.

Proposition 4. Assume that error location fails, i.e., the SPI
error locating algorithm returns Λ̃(x) 6= γΛE(x). Then there
exists some nonzero polynomial Λ(x) such that deg Λ(x) <
|U | and

deg
(
E(i)(x)Λ(x) mod m(x)

)
< k + |U | (29)

for all i = 1, . . . , L. 2

Let SU be the set of all the possible error matrices E with
the given support set U . Let Sf ⊂ SU be the set of all E ∈ SU
that admit some Λ(x) ∈ F [x] with 0 ≤ deg Λ(x) < |U | that
satisfies (29) for all i ∈ {1, . . . , L}. Then the probability Pf
of failing to correct E ∈ SU is bounded by

Pf ≤
|Sf |
|SU |

=
|Sf |

(qL − 1)|U |
(30)

It thus remains to bound |Sf |.
For t = 0, . . . , |U | − 1, let Lt be the set of monic polyno-

mials Λ(x) ∈ F [x] with deg Λ(x) < |U | and with exactly t

zeros in the set BU
4
= {β` : ` ∈ U}.

Lemma 2. For any fixed Λ(x) ∈ Lt, the number of error
patterns E ∈ SU that satisfy (29) is upper bounded by
qL(2|U |−(n−k)−t). 2

The proof will be given below. We then have

|Sf | ≤
|U |−1∑
t=0

|Lt| qL(2|U |−(n−k)−t). (31)

Lemma 3.
|Lt| =

(
|U |
t

)
(q − 1)|U |−t−1. (32)

2

The proof is given below. Thus (31) becomes

|Sf | ≤
|U |−1∑
t=0

(
|U |
t

)
(q − 1)|U |−t−1qL(2|U |−(n−k)−t) (33)

= w

|U |−1∑
t=0

(
|U |
t

)
(q − 1)−tq−Lt (34)

< w

|U |∑
t=0

(
|U |
t

)(
(q − 1)−1q−L

)t
(35)

= w
(
1 + (q − 1)−1q−L

)|U |
(36)

=
qL(|U |−(n−k))

q − 1

(
(q − 1)qL + 1

)|U |
(37)

with w 4
= (q−1)|U |−1qL(2|U |−(n−k)) in (34)–(36). From (30),

we then have

Pf <
qL(|U |−(n−k))

q − 1

(
qL+1 − qL + 1

qL − 1

)|U |
(38)

=
q−L(n−k−|U |)+|U |

q − 1

(
qL − (qL−1 − q−1)

qL − 1

)|U |
(39)

and (28) follows if L > 1.
For the proof of Lemma 2, we will use the following

elementary fact.

Proposition 5. The number of nonzero polynomials over F
of degree at most ν and with µ ≤ ν prescribed zeros in F
(and allowing additional zeros in F) is |F |ν−µ+1 − 1. 2

Proof of Lemma 2: Consider the polynomial E(i)(x) =

ψ−1(e(i)) where e(i) is a row of E, and let Ẽ(i)(x)
4
=

E(i)(x)Λ(x) mod m(x). From (9), we have

Ẽ(i)(β`) = ei,`Λ(β`) (40)

where ei,` denotes the element in row i and column ` of E.
From (29), we have deg Ẽ(i)(x) < k + |U |. But (40) implies
that Ẽ(i)(x) has at least n − |U | + t zeros in prescribed
positions: ei,` = 0 for ` 6∈ U and Λ(x) has t zeros in
BU = {β` : ` ∈ U}. By Proposition 5, the number of such
polynomials Ẽ(i) is bounded by q2|U |−(n−k)−t, and putting
all rows together yields the lemma. 2

Proof of Lemma 3: Consider nonzero polynomials Λ(x) ∈
F [x] with deg Λ(x) < |U | and with t prescribed zeros in BU
(= {β` : ` ∈ U}) and no other zeros in BU . The number of
such polynomials Λ(x) is (q−1)|U |−t, as is obvious from the
ring isomorphism

F [x]/mU (x)→ F |U | : Λ(x) 7→
(
Λ(β′1), . . . ,Λ(β′|U |)

)
(41)

with mU (x)
4
=
∏
`∈U (x − β`) and {β′1, . . . , β′|U |}

4
= BU .

Lemma 3 then follows from noting that it counts only monic
polynomials. 2

VIII. CONCLUSION

We have continued to develop the partial-inverse approach
to decoding subfield-evaluation codes and interleaved Reed-
Solomon codes. The proposed new decoding algorithm is as
efficient as the best algorithms in the prior literature, and it
permits to prove both the best bound for guaranteed error
correction (using the rank of the error matrix) and the best
bound on error probability for random errors; this combination
has not previously been reported in the literature.

REFERENCES

[1] J.-H. Yu and H.-A. Loeliger, “Reverse Berlekamp-Massey decoding,”
IEEE Int. Symp. on Information Theory, Istanbul, Turkey, July 7–12,
2013.

[2] J.-H. Yu and H.-A. Loeliger, “An algorithm for simultaneous partial
inverses,” Proc. 52th Annual Allerton Conference on Communication,
Control, and Computing, Monticello, Illinois, USA, Oct. 1–3, 2014.
Available from http://people.ee.ethz.ch/∼loeliger/

[3] A. Brown, L. Minder, and M. A. Shokrollahi, “Probabilistic decoding
of interleaved RS-codes on the Q-ary symmetric channel,” IEEE Int.
Symp. on Information Theory, Chicago, USA, June 27–July 2, 2004.

[4] F. Parvaresh and A. Vardy, “On the performance of multivariate in-
terpolation decoding of Reed-Solomon codes,” IEEE Int. Symp. on
Information Theory, Seattle, USA, July 9–14, 2006.

[5] G. Schmidt, V. R. Sidorenko, and M.Bossert, “Collaborative decoding
of interleaved Reed-Solomon codes and concatenated codes designs,”
IEEE Trans. Information Theory, vol. 55, pp. 2991–3012, July 2009.

[6] V. Guruswami and M. Sudan, “Improved decoding of Reed-Solomon
codes and algebraic-deometric codes,” IEEE Trans. Information Theory,
vol. 45, pp. 1755–1764, Sept. 1999.

[7] D. Bleichenbacher, A. Kiayias, and M. Yung, “Decoding of interleaved
Reed-Solomon codes over noisy data,” Lect. notes Computer Sci.,
vol. 2719, pp. 97–108, 2003.

[8] F. Parvaresh and A. Vardy, “Multivariate interpolation decoding beyond
the Guruswami-Sudan radius,” Proc. 42th Annual Allerton Conference
on Communication, Control, and Computing, Urbana, Illinois, USA,
October, 2004.

[9] J. J. Metzner and E. J. Kapturowski, “A general decoding technique
applicable to replicated file disagreement location and concatenated code
decoding,” IEEE Trans. Information Theory, vol. 36, pp. 911–917, July
1990.

[10] C. Haslach and A. J. H. Vinck, “A deoding algorithm with restrictions
for array codes,” IEEE Trans. Information Theory, vol. 45, pp. 2339–
2344, Nov. 1999 (and correction in the same publication, vol. 47, p.
470, Jan. 2001).

[11] H. Kurzweil, M. Seidl, and J. B. Huber, “Reduced-complexity collab-
orative decoding of interleaved Reed-Solomon and Gabidulin codes,”
IEEE Int. Symp. on Information Theory, Saint Petersburg, Russia, July
31–Aug. 5, 2011.

[12] R. M. Roth and P. O. Vontobel, “Coding for combined block-symbol
error correction,” IEEE Trans. Information Theory, vol. 60, pp. 2697–
2713, May 2014.

[13] J.-H. Yu and H.-A. Loeliger, “On irreducible polynomial remainder
codes,” IEEE Int. Symp. on Information Theory, Saint Petersburg, Russia,
July 31–Aug. 5, 2011.

[14] J.-H. Yu and H.-A. Loeliger, “On polynomial remainder codes,”
http://arxiv.org/abs/1201.1812.

[15] R. E. Blahut, Algebraic Codes for Data Transmission. Cambridge
University Press, Cambridge, UK, 2003.

