19th European Signal Processing Conference (EUSIPCO 2011)

Barcelona, Spain, August 29 - September 2, 2011

SAMPLING JITTER CORRECTION USING FACTOR GRAPHS

Lukas Bolliger and Hans-Andrea Loeliger

ETH Zurich
Dept. of Information Technology & Electr. Eng.
8092 Ziirich, Switzerland
Email: {bolliger, loeliger}@isi.ee.ethz.ch

ABSTRACT

Analog-to-digital converters are impaired by sampling clock
jitter. The error induced by clock jitter depends on the slope
of the analog signal at the sampling instant. In this paper,
a continuous-time state space model allows to estimate the
slope of the continuous-time signal, which is then used in an
iterative algorithm for jitter correction.

1. INTRODUCTION

Sampling clock jitter in analog-to-digital (A/D) conversion is
a well-known problem; it occurs when, due to hardware im-
perfections, the exact sampling instants are subject to random
fluctuations. For bandlimited signals, approaches for clock
jitter correction based on Linear Minimum Mean Square Er-
ror (LMMSE) estimation are proposed in [1] and [2]. In [1],
a filter bank that converts a non-uniformly sampled signal
to a uniformly sampled signal is extended for unknown de-
lays in the sampling process. In [2], a Fourier series of the
discrete-time signal is used to construct an LMMSE filter for
clock jitter correction.

In this paper, we propose a different approach to clock
jitter correction. Unlike [1] and [2], we do not assume the
continuous-time analog signal to be strictly bandlimited. In-
stead, following [3], we assume that

e this signal is the output of a continuous-time linear sys-
tem (or filter) that is driven by white noise and that
e the state space of this filter is finite dimensional.

A factor graph approach to Maximum a Posteriori (MAP) es-
timation (= LMMSE estimation) of such signals from noisy
discrete-time observations (without clock jitter) was pre-
sented in [3]. In the present paper, we will exploit the
fact that, with such a state space model, the slope of the
continuous-time signal is computationally accessible.

Clearly, if the slope of the continuous-time signal is large
at the sampling instant, even a small deviation of the sam-
pling instant has a large impact on the observation. Thus, the
noise variance under which the discrete-time signal is ob-
served depends on the signal slopes at the sampling instants.
We show how the algorithm proposed in [3] can be extended
to estimate the slope of the continuous-time signal as well
and we propose an iterative algorithm where the estimates of
the slopes of the continuous-time signal are used to improve
the quality of the discrete-time signal. Each iteration by itself
calculates a regularized least squares estimate, where the first
iteration turns out to be similar to the algorithm presented
in [2]. We will use factor graphs and message passing algo-
rithms as introduced in [4].

This paper is structured as follows: Sections 2 and 3 are
about the system model and its factor graph representation,
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which are based on [3]. Section 4 is about some technicali-
ties regarding the notion of signal-to-noise ratio (SNR). The
proposed algorithm is presented in Section 5 and some sim-
ulation results are presented in Section 6.

2. SYSTEM MODEL

For k = 0,...,K — 1, let ¥; be noisy samples of some
continuous-time signal Y(z) at the sampling instants T,
which are random according to
Ty =t + Dy, (1)
with known #y < #; < f,... and a random delay D; with
E[D;] =0and E [Df] = 6. We define the observed discrete-
time (digital) signal as
5 A
BEY (1) +2Z, @)
where Z;, which models quantization and general hard-
ware imperfections, is additive white Gaussian noise with
E[Z}| =07 .
Some delay Dy of the sampling instant causes a larger
error for ¥} if the slope of Y (¢) at t = 1 is large. This is
expressed by a first order Taylor approximation of ¥ (¢):

Yk =Y (l‘k Jer) +7Z
=Y (1) + DY () + Z,

3
“

where Y denotes the derivative of ¥ with respect to time.
We define the approximate jitter error

I EDY (1), 5)

with
EJ]=0 (6)
E[] = 03E [¥ ()] ™

Following [3] we will model Y, as the discrete-time ob-
servation of continuous-time filtered noise. This model is
illustrated in Figure 1: A continuous-time filter is driven by
continuous-time white Gaussian noise; its output is sampled
and then corrupted by discrete-time additive white Gaussian
noise.

The continuous-time system is known and given by its
state-space representation. Hence, X € R" is the state of the
system which evolves in time according to

X(t) =AX(t) +bU(t), (8)
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Figure 1: System model as in [3]

with A € R"*" and b € R". The input U(¢) € R is assumed
to have mean zero and an auto-correlation function

E[U(t+7)U(1)] = o7 6(1), ©9)

where 6(.) denotes the Dirac delta. The output Y (z) of the
filter is a linear combination of the state variables:
Y(t)=c'X(1) (Y(t) eR,c€R"). (10)
Modeling U (¢) as continuous-time white Gaussian noise
amounts to a power constraint on the input signal U (¢), which
causes the spectrum of the estimate of Y (¢) to be shaped by
the filter defined by A, b and ¢ (cf. Section 3 and [3]).
Y (¢) can be expressed as

Y(t)=cX(t) (11)
= cTAX (1) 4+ cThU(1). (12)

In the present paper, we will asssume ¢'b = 0, which
amounts to insisting that the transfer functions from U(t) to
Y (¢) and U(¢) to Y (¢) have low-pass characteristics. We thus
have

V(1) = cTAX(r). (13)

3. FACTOR GRAPH REPRESENTATION

We use Forney factor graphs (normal factor graphs) as in [4]
where nodes represent factors and edges represent variables.
For messages we use the same notation as in [4]: all edges
are directed, the forward message along some edge X is de-
noted as [y (x), and the backward message as Uy (x). The
marginal density fy(x) of X equals Wy (x)- Ty (x), up to a
scale factor.

In the present paper all messages are Gaussian and thus
fully defined by a mean vector m and a covariance matrix V.
We use AV (m,V) to denote a Gaussian density function, thus

Hx ZN(WX,V)X) (14)
Wy = N (i, V). (15)

Gaussian message passing in factor graphs is discussed in
detail in [4].

The factor graph described in [3] is easily extended for
clock jitter correction as seen in Figure 2. To reduce calcu-
lation complexity, J; is modeled as Gaussian noise; note that

(i) £ E [72] is not constant for all k.
The factor graph is cycle-free, thus all messages ﬁxm

and ﬂx(,k) can be calculated by performing one forward and
one backward pass.

S ()| x(w)

X (trr1)

Yir1 = Jin

Figure 2: A Forney factor graph of the system in Figure 1.

Table 1: Computation rules as in [3] for Gaussian messages
through node /factor f(x(t;)|x(t9)) with 1; > 1 .

X(lo) X(l])
f(x(11)[x(10))
W/l)x(t” = eA(tl _ZO)mx(m) (1])
— P4 Tt —
VX(II) — Ali—1) Vx(zo)eA (t1—to)
't —1lo
+op / AThbTeA Tdr (i.2)
JO
06 (1 —1)01  see (17)
WXOO) = e_Am_lO)WX(,l) (13)
“— <« T
V) = e—Ali—1) VX(t,)eiA (ti—to)
11—l
s / AT T (id)
JO
00(1—1p)o"  see (19)
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The calculation of the mean and the covariance matrix for
Gaussian messages through f(x(fx41)|x(1)) are given in [3]
and are repeated in Table 1. If the matrix A is diagonalizable,
then the integrals in (i.2) and (i.4) can easily be expressed in
closed forms. If

A 0

A=0 o' (16)
0 An

for some complex square matrix Q, then
t
/ AT T = 00 (1) o (17)
0
where the square matrix 60) is given by

~ QD) (o
8 (1), 2 Q@) ( yiTin 18
(ke At g (e ) ’ (1%)

and

/ AT A" r — 08 (1) oM (19)
0

with
— -1 *lb) _
0 é%(gé 1 — e~ Mt 20
(1) r7ers vl (T FCY

Note that, in (18) and (20), (Q~'b); denotes the k-th compo-
nent of the vector Q~'b. For the message computation rules
through all other nodes/factors the reader is referred to [4].

Calculating all the messages and maximizing the
marginal of X(#;) yields the Maximum a Posteriori (MAP)
estimate £(#) of X (;.):

(1) £ argmax fy(,) (x50, - ., 07 (10),...) (1)

= argmax Hx () (x) - Hx (g (¥)- (22)

We define 7i(¢) as the estimate of the input signal U (¢) of
the filter. In this paper we are not interested in 4(¢), cf. [3] on
the calculation and the properties of /(z). Since all messages
are Gaussian, the maximization in (21) is equivalent to a least
squares estimation (cf. [4]). Thus, £(#;) is a regularized least
squares estimate of X (#;) for given 67 (to),...,07(tx_1) and
30, - - -, Yk —1, Which minimizes the cost function

1 Ko (51— ck(n)’
o7 Jiy = o;+o0;5(t)

This cost function illustrates how the parameter o7
serves as a power constraint on (). The ratio between the
input power G,% and the average output noise power of J;, +Z;
is a regularization parameter used to force the spectrum of
f(t) and $(¢) = ¢T£(¢) to the passband of the continuous-time
filter (cf. [3]).

4. DEFINITIONS OF SNR

The following definitions for signal-to-noise ratios (SNR) are
used in Sections 5 and 6. We measure SNR in dB (i.e. 10-
log,, (SNR)). For the signal ¥; we define

a E[Y()?
SNR = ST E[7] (24)
2
sng, 2 EVO) 25)
0z
~ E[Y(t)’]
SNR; £ — T (26)

with E[/?] = 63E [Y (z)z} .

2

For the SNR of the estimate y(t;) = cT£(t) of Y () we

define
N E [Y (1)?] .
E [(f/(fk) *Y(tk))z]

SNRut 27

Assuming Re (4;) < 0 for all 4; in (16) (i.e., a stable sys-
tem), the mean vector and the covariance matrix of the mes-
sage

Wx(o0) = Jim () (28)
converge to
Tix (00) = lim & =0 (29)
— . —
Vi(oo) < lim 6500 (1)0". (30)

ﬁx(oo) represents the probability distribution of X (¢) in
the absence of observations, therefore

E[X(1)] = Tix(o) =0 31
E [X(1)?] = V(o) (32)

and thus
E [Y (z)z} —TE [X (r)z} ¢ (33)
= TV (o) (34)
E [Y (t)z} —TE [X (r)z} ¢ (35)
NI (36)

5. THE ALGORITHM

We now describe an iterative algorithm to estimate the signal
Y (#) for all k. We assume the special case of uniform sam-
pling with rate f;, i.e., iy = k/ f;, although the algorithm can
easily be adjusted for non-uniform sampling.

Some remarks on notation: x(*) denotes the value of some
variable x at the ¢-th iteration and £ denotes the estimate of
some random variable X.
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At each iteration £, £(1;)() is calculated as described in
Section 3. The estimates of ¥ (#;) and its derivatives are

9(0)" = cTa(n) " (37)

Ht) W = TAg(n) . (38)

At the first iteration no estimates of the derivatives are

available. Thus, 012 (tk)(o) is initialized using (36) to the ex-
pected average power of J; which is constant for all k:

T
a7 ()% = 63cTAV x (o) (cTA) . (39)

This first iteration is similar to the algorithm described in [2];
the main difference is that we are not assuming strictly band-
limited signals.

Initeration £ = 1,2, ..., the value for 67 (r;)(") is set based
on the estimate of Y () of iteration £ — 1 according to (7):

aj ()" = o (f(%)wl) )2 (40)

- (cTA;e(tk)“*l))z (=12,.... (41

The ratio between the input power and the average output
power

GIZJ(Z)

” 2
03 + OB EiL 1 (cTAR 1))

(42)

influences the spectrum of £(¢) as mentioned in the end of

Section 3. Thus, (7[2](4>
all iterations.

For the numerical results given in Section 6, the values
(0)

is chosen to keep (42) constant over

2 ~2 2
for o5, _GZ and oy,
generation.

are set equal to the values used for signal

6. NUMERICAL RESULTS

To test the algorithm, sample signals J;, have been generated
according to the model in Figure 1 (cf. [3] on how to gener-
ate sample signals). For the continuous-time system a low-
pass Butterworth filter of order 8 was used. Recall that ¥ (¢)
is not strictly bandlimited but its spectrum is shaped by the
spectrum of the continuous-time filter. We characterize the
“pandwidth” of Y (r) by the —3 dB frequency f, of the But-
terworth filter.

For signal generation, we chose the random delay Dy of
the sampling instants to be uniformly distributed in the inter-

val (70%, 0%) Note that the estimation algorithm uses a
Gaussian distribution for the time delay with

E[D( =0 (43)
0.25/f,)°
E[p}) = OBH) 3/ o8 (44)

The algorithm stops after the ¢-th iteration if

SNR\ (dB] — SNRY. V) [dB]
SNR()) [dB] — SNR')[dB]

out out

<0.01. (45)

For the data shown in Figure 3, each point in the plot was
generated by 100 signals with K = 100 000 samples. The
algorithm always stopped after three or four iterations.

Simulations were performed for three different values of
the —3 dB frequency f, (thus, different “bandwiths” of Y (7)).
The results are shown in Figure 3, where SNRy,¢ of the esti-
mates after the first and the last iteration are plotted for dif-
ferent values for SNRz. To show the overall improvement of
the SNR, SNR of the observed, noisy samples jy is plotted
as well.

Not surprisingly, the numerical results of the first iter-
ation resemble the results in [2]. As mentioned in the in-
troduction, the first iteration of our proposed algorithm is
similar to the algorithm proposed in [2]. Since [2] assumes
strictly bandlimited signals an exact comparison does not
make sense.

Bl — SNRt first iteration 7]
_ _  SNRyy last iteration = — —— — —
500 . SNRtOt fc = fs . 2_6 T
f c— Js 7= ]
fe=1Fs- 272
| ! ! ! ! ! !

SNR 7 [dB]

Figure 3: Empirical SNR,,; and SNRy for different band-
with of Y (¢).

7. CONCLUSION

We have proposed an iterative algorithm to estimate a
continuous-time signal from noisy discrete-time observa-
tions subject to clock jitter. The noise induced by the clock
jitter was modeled to be dependent on the slope of the
continuous-time signal at the sampling instant. We showed
how to improve the estimate by iterative processing.

The algorithm is easily extended to non-uniform sam-
pling. Also the estimation of the input signal U(z) of the
continuous-time filter is straightforward (cf. [3]).

ACKNOWLEDGEMENT

The authors would like to thank Mr. Daniel Baumann for the
initial implementation of the algorithms of this paper and for
providing first simulation results.

REFERENCES

[1] R.S. Prendergast and T.Q. Nguyen, “Optimal reconstruc-
tion of periodically sampled signals with probabilistic

852



(2]

(3]

(4]

timing delays,” Thirty-Eighth Asilomar Conference on
Signals, Systems and Computers, 2004, Vol. 2, pp. 2141—
2145.

A. Nordio, C.-F. Chiasserini, and E. Viterbo, “Signal
reconstruction errors in jittered sampling,” IEEE Trans.
Signal Proc., Vol. 57, No. 12, pp. 4711-4718, Dec. 2009.

L. Bolliger, H.-A. Loeliger, and C. Vogel, “Simula-
tion, MMSE estimation, and interpolation of sampled
continuous-time signals using factor graphs,” Informa-
tion Theory & Applications Workshop, UCSD, La Jolla,
CA, USA, 2010

H.-A. Loeliger, J. Dauwels, Junli Hu, S. Korl, Li Ping,
and FR. Kschischang, “The factor graph approach to

model-based signal processing,” Proceedings of the
IEEE, Vol. 95, No. 6, pp. 1295-1322, June 2007.

853



