
SAMPLING JITTER CORRECTION USING FACTOR GRAPHS

Lukas Bolliger and Hans-Andrea Loeliger

ETH Zurich
Dept. of Information Technology & Electr. Eng.
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ABSTRACT
Analog-to-digital converters are impaired by sampling clock
jitter. The error induced by clock jitter depends on the slope
of the analog signal at the sampling instant. In this paper,
a continuous-time state space model allows to estimate the
slope of the continuous-time signal, which is then used in an
iterative algorithm for jitter correction.

1. INTRODUCTION

Sampling clock jitter in analog-to-digital (A/D) conversion is
a well-known problem; it occurs when, due to hardware im-
perfections, the exact sampling instants are subject to random
fluctuations. For bandlimited signals, approaches for clock
jitter correction based on Linear Minimum Mean Square Er-
ror (LMMSE) estimation are proposed in [1] and [2]. In [1],
a filter bank that converts a non-uniformly sampled signal
to a uniformly sampled signal is extended for unknown de-
lays in the sampling process. In [2], a Fourier series of the
discrete-time signal is used to construct an LMMSE filter for
clock jitter correction.

In this paper, we propose a different approach to clock
jitter correction. Unlike [1] and [2], we do not assume the
continuous-time analog signal to be strictly bandlimited. In-
stead, following [3], we assume that
• this signal is the output of a continuous-time linear sys-

tem (or filter) that is driven by white noise and that
• the state space of this filter is finite dimensional.

A factor graph approach to Maximum a Posteriori (MAP) es-
timation (= LMMSE estimation) of such signals from noisy
discrete-time observations (without clock jitter) was pre-
sented in [3]. In the present paper, we will exploit the
fact that, with such a state space model, the slope of the
continuous-time signal is computationally accessible.

Clearly, if the slope of the continuous-time signal is large
at the sampling instant, even a small deviation of the sam-
pling instant has a large impact on the observation. Thus, the
noise variance under which the discrete-time signal is ob-
served depends on the signal slopes at the sampling instants.
We show how the algorithm proposed in [3] can be extended
to estimate the slope of the continuous-time signal as well
and we propose an iterative algorithm where the estimates of
the slopes of the continuous-time signal are used to improve
the quality of the discrete-time signal. Each iteration by itself
calculates a regularized least squares estimate, where the first
iteration turns out to be similar to the algorithm presented
in [2]. We will use factor graphs and message passing algo-
rithms as introduced in [4].

This paper is structured as follows: Sections 2 and 3 are
about the system model and its factor graph representation,

which are based on [3]. Section 4 is about some technicali-
ties regarding the notion of signal-to-noise ratio (SNR). The
proposed algorithm is presented in Section 5 and some sim-
ulation results are presented in Section 6.

2. SYSTEM MODEL

For k = 0, . . . ,K − 1, let Ỹk be noisy samples of some
continuous-time signal Y (t) at the sampling instants Tk,
which are random according to

Tk = tk +Dk, (1)

with known t0 < t1 < t2, . . . and a random delay Dk with
E [Dk] = 0 and E

[
D2

k

]
= σ2

D. We define the observed discrete-
time (digital) signal as

Ỹk
4= Y (Tk)+Zk, (2)

where Zk, which models quantization and general hard-
ware imperfections, is additive white Gaussian noise with
E
[
Z2

k

]
= σ2

Z .
Some delay Dk of the sampling instant causes a larger

error for Ỹk if the slope of Y (t) at t = tk is large. This is
expressed by a first order Taylor approximation of Y (t):

Ỹk = Y (tk +Dk)+Zk (3)

≈ Y (tk)+DkẎ (tk)+Zk, (4)

where Ẏ denotes the derivative of Y with respect to time.
We define the approximate jitter error

Jk
4= DkẎ (tk) , (5)

with

E [Jk] = 0 (6)

E
[
J2

k
]
= σ

2
D E
[
Ẏ (tk)

2
]
. (7)

Following [3] we will model Ỹk as the discrete-time ob-
servation of continuous-time filtered noise. This model is
illustrated in Figure 1: A continuous-time filter is driven by
continuous-time white Gaussian noise; its output is sampled
and then corrupted by discrete-time additive white Gaussian
noise.

The continuous-time system is known and given by its
state-space representation. Hence, X ∈ Rn is the state of the
system which evolves in time according to

Ẋ(t) = AX(t)+bU(t), (8)
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Figure 1: System model as in [3]

with A ∈ Rn×n and b ∈ Rn. The input U(t) ∈ R is assumed
to have mean zero and an auto-correlation function

E [U(t + τ)U(t)] = σ
2
U δ (τ), (9)

where δ (.) denotes the Dirac delta. The output Y (t) of the
filter is a linear combination of the state variables:

Y (t) = cTX(t) (Y (t) ∈ R,c ∈ Rn) . (10)

Modeling U(t) as continuous-time white Gaussian noise
amounts to a power constraint on the input signal U(t), which
causes the spectrum of the estimate of Y (t) to be shaped by
the filter defined by A, b and c (cf. Section 3 and [3]).

Ẏ (t) can be expressed as

Ẏ (t) = cẊ(t) (11)

= cTAX(t)+ cTbU(t). (12)

In the present paper, we will asssume cTb = 0, which
amounts to insisting that the transfer functions from U(t) to
Y (t) and U(t) to Ẏ (t) have low-pass characteristics. We thus
have

Ẏ (t) = cTAX(t). (13)

3. FACTOR GRAPH REPRESENTATION

We use Forney factor graphs (normal factor graphs) as in [4]
where nodes represent factors and edges represent variables.
For messages we use the same notation as in [4]: all edges
are directed, the forward message along some edge X is de-
noted as −→µ X (x), and the backward message as ←−µ X (x). The
marginal density fX (x) of X equals −→µ X (x) ·←−µ X (x), up to a
scale factor.

In the present paper all messages are Gaussian and thus
fully defined by a mean vector m and a covariance matrix V .
We use N (m,V ) to denote a Gaussian density function, thus

−→
µ X =N (−→mX ,

−→
V X ) (14)

←−
µ X =N (←−mX ,

←−
V X ). (15)

Gaussian message passing in factor graphs is discussed in
detail in [4].

The factor graph described in [3] is easily extended for
clock jitter correction as seen in Figure 2. To reduce calcu-
lation complexity, Jk is modeled as Gaussian noise; note that
σ2

J (tk)
4= E

[
J2

k

]
is not constant for all k.

The factor graph is cycle-free, thus all messages −→µ X(tk)

and←−µ X(tk) can be calculated by performing one forward and
one backward pass.

X(tk)
- = -

f
(
x(tk+1)|x(tk)

)
- = -

X(tk+1)

? ?

cT cT

?
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(
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Figure 2: A Forney factor graph of the system in Figure 1.

Table 1: Computation rules as in [3] for Gaussian messages
through node / factor f

(
x(t1)|x(t0)

)
with t1 > t0 .

X(t0)-

f
(
x(t1)|x(t0)

)
X(t1)-

−→mX(t1) = eA(t1−t0)−→mX(t0) (i.1)
−→
V X(t1) = eA(t1−t0)−→V X(t0)e

AT(t1−t0)

+σ
2
U

∫ t1−t0

0
eAτ bbTeAT

τ dτ︸ ︷︷ ︸
Q
−→
Θ(t1−t0)QH see (17)

(i.2)

←−mX(t0) = e−A(t1−t0)←−mX(t1) (i.3)
←−
V X(t0) = e−A(t1−t0)←−V X(t1)e

−AT(t1−t0)

+σ
2
U

∫ t1−t0

0
e−Aτ bbTe−AT

τ dτ︸ ︷︷ ︸
Q
←−
Θ(t1−t0)QH see (19)

(i.4)
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The calculation of the mean and the covariance matrix for
Gaussian messages through f

(
x(tk+1)|x(tk)

)
are given in [3]

and are repeated in Table 1. If the matrix A is diagonalizable,
then the integrals in (i.2) and (i.4) can easily be expressed in
closed forms. If

A = Q

 λ1 0
. . .

0 λn

Q−1 (16)

for some complex square matrix Q, then∫ t

0
eAτ bbTeAT

τ dτ = Q
−→
Θ(t)QH (17)

where the square matrix
−→
Θ(t) is given by

−→
Θ(t)k,`

4=
(Q−1b)k(Q−1b)`

λk +λ`

(
e(λk+λ`)t −1

)
, (18)

and ∫ t

0
e−Aτ bbTe−AT

τ dτ = Q
←−
Θ(t)QH (19)

with

←−
Θ(t)k,`

4=
(Q−1b)k(Q−1b)`

λk +λ`

(
1− e−(λk+λ`)t

)
. (20)

Note that, in (18) and (20), (Q−1b)k denotes the k-th compo-
nent of the vector Q−1b. For the message computation rules
through all other nodes/factors the reader is referred to [4].

Calculating all the messages and maximizing the
marginal of X(tk) yields the Maximum a Posteriori (MAP)
estimate x̂(tk) of X(tk):

x̂(tk)
4= argmax

x
fX(tk)(x|ỹ0, . . . ,σ

2
J (t0), . . .) (21)

= argmax
x

−→
µ X(tk)(x) ·

←−
µ X(tk)(x). (22)

We define û(t) as the estimate of the input signal U(t) of
the filter. In this paper we are not interested in û(t), cf. [3] on
the calculation and the properties of û(t). Since all messages
are Gaussian, the maximization in (21) is equivalent to a least
squares estimation (cf. [4]). Thus, x̂(tk) is a regularized least
squares estimate of X(tk) for given σ2

J (t0), . . . ,σ2
J (tK−1) and

ỹ0, . . . , ỹK−1, which minimizes the cost function

1
σ2

U

∫ tK

t0
û(t)2dt +

K−1

∑
k=0

(ỹk− cx̂(tk))
2

σ2
Z +σ2

J (tk)
. (23)

This cost function illustrates how the parameter σ2
U

serves as a power constraint on û(t). The ratio between the
input power σ2

U and the average output noise power of Jk +Zk
is a regularization parameter used to force the spectrum of
û(t) and ŷ(t) = cTx̂(t) to the passband of the continuous-time
filter (cf. [3]).

4. DEFINITIONS OF SNR

The following definitions for signal-to-noise ratios (SNR) are
used in Sections 5 and 6. We measure SNR in dB (i.e. 10 ·
log10 (SNR)). For the signal Ỹk we define

SNRtot
4=

E
[
Y (t)2

]
σ2

Z +E
[
J2

k

] (24)

SNRZ
4=

E
[
Y (t)2

]
σ2

Z
(25)

SNRJ
4=

E
[
Y (t)2

]
E
[
J2

k

] , (26)

with E
[
J2

k

]
= σ2

D E
[
Ẏ (t)2

]
(7).

For the SNR of the estimate ŷ(tk)
4= cTx̂(tk) of Y (tk) we

define

SNRout
4=

E
[
Y (tk)2

]
E
[(

Ŷ (tk)−Y (tk)
)2
] . (27)

Assuming Re(λi) < 0 for all λi in (16) (i.e., a stable sys-
tem), the mean vector and the covariance matrix of the mes-
sage

−→
µ X(∞)

4= lim
t→∞
−→
µ X(t) (28)

converge to

−→mX(∞)
4= lim

t→∞
eAt = 0 (29)

−→
V X(∞)

4= lim
t→∞

σ
2
U Q
−→
Θ(t)QH. (30)

−→
µ X(∞) represents the probability distribution of X(t) in

the absence of observations, therefore

E [X(t)] =−→mX(∞) = 0 (31)

E
[
X(t)2]=

−→
V X(∞), (32)

and thus

E
[
Y (t)2

]
= cT E

[
X (t)2

]
c (33)

= cT−→V X(∞)c (34)

E
[
Ẏ (t)2

]
= cT E

[
Ẋ (t)2

]
c (35)

= cTA
−→
V X(∞)

(
cTA
)T

. (36)

5. THE ALGORITHM

We now describe an iterative algorithm to estimate the signal
Y (tk) for all k. We assume the special case of uniform sam-
pling with rate fs, i.e., tk = k/ fs, although the algorithm can
easily be adjusted for non-uniform sampling.

Some remarks on notation: x(`) denotes the value of some
variable x at the `-th iteration and x̂ denotes the estimate of
some random variable X .
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At each iteration `, x̂(tk)(`) is calculated as described in
Section 3. The estimates of Y (tk) and its derivatives are

ŷ(tk)(`) = cTx̂(tk)(`) (37)

ˆ̇y(tk)(`) = cTAx̂(tk)(`). (38)

At the first iteration no estimates of the derivatives are
available. Thus, σ2

J (tk)(0) is initialized using (36) to the ex-
pected average power of Jk which is constant for all k:

σ
2
J (tk)(0) = σ

2
DcTA

−→
V X(∞)

(
cTA
)T

. (39)

This first iteration is similar to the algorithm described in [2];
the main difference is that we are not assuming strictly band-
limited signals.

In iteration ` = 1,2, . . . , the value for σ2
J (tk)(`) is set based

on the estimate of Ẏ (tk) of iteration `−1 according to (7):

σ
2
J (tk)(`) = σ

2
D

(
ˆ̇y(tk)(`−1)

)2
(40)

= σ
2
D

(
cTAx̂(tk)(`−1)

)2
` = 1,2, . . . . (41)

The ratio between the input power and the average output
power

σ
2(`)
U

σ2
Z +σ2

D
1
N ∑

N
k=1
(
cTAx̂(tk)(`−1)

)2 (42)

influences the spectrum of x̂(t) as mentioned in the end of
Section 3. Thus, σ

2(`)
U is chosen to keep (42) constant over

all iterations.
For the numerical results given in Section 6, the values

for σ2
D, σ2

Z and σ
2(0)
U are set equal to the values used for signal

generation.

6. NUMERICAL RESULTS

To test the algorithm, sample signals ỹk have been generated
according to the model in Figure 1 (cf. [3] on how to gener-
ate sample signals). For the continuous-time system a low-
pass Butterworth filter of order 8 was used. Recall that Y (t)
is not strictly bandlimited but its spectrum is shaped by the
spectrum of the continuous-time filter. We characterize the
“bandwidth” of Y (t) by the −3 dB frequency fc of the But-
terworth filter.

For signal generation, we chose the random delay Dk of
the sampling instants to be uniformly distributed in the inter-
val
(
− 0.25

fs
, 0.25

fs

)
. Note that the estimation algorithm uses a

Gaussian distribution for the time delay with

E [Dk] = 0 (43)

E
[
D2

k
]
=

(0.25/ fs)
2

3
. (44)

The algorithm stops after the `-th iteration if

SNR(`)
out[dB]−SNR(`−1)

out [dB]

SNR(`)
out[dB]−SNR(0)

out[dB]
< 0.01. (45)

For the data shown in Figure 3, each point in the plot was
generated by 100 signals with K = 100 000 samples. The
algorithm always stopped after three or four iterations.

Simulations were performed for three different values of
the−3 dB frequency fc (thus, different “bandwiths” of Y (t)).
The results are shown in Figure 3, where SNRout of the esti-
mates after the first and the last iteration are plotted for dif-
ferent values for SNRZ . To show the overall improvement of
the SNR, SNRtot of the observed, noisy samples ỹk is plotted
as well.

Not surprisingly, the numerical results of the first iter-
ation resemble the results in [2]. As mentioned in the in-
troduction, the first iteration of our proposed algorithm is
similar to the algorithm proposed in [2]. Since [2] assumes
strictly bandlimited signals an exact comparison does not
make sense.
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Figure 3: Empirical SNRout and SNRtot for different band-
with of Y (t).

7. CONCLUSION

We have proposed an iterative algorithm to estimate a
continuous-time signal from noisy discrete-time observa-
tions subject to clock jitter. The noise induced by the clock
jitter was modeled to be dependent on the slope of the
continuous-time signal at the sampling instant. We showed
how to improve the estimate by iterative processing.

The algorithm is easily extended to non-uniform sam-
pling. Also the estimation of the input signal U(t) of the
continuous-time filter is straightforward (cf. [3]).
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