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Abstract—The paper proposes a factor graph representation of
finite-dimensional continuous-time linear systems / filters driven
by white Gaussian noise. Applications of such factor graphs
include (i) simulation of the output signal at arbitrary discrete
instants and (ii) MAP / MMSE / LMMSE estimation of the input
signal, or of the state, or of the output signal at arbitrary
discrete instants from noisy observations of the output signal
at arbitrary discrete instants. Moreover, it is suggested that the
MMSE estimate of the input signal from the output signal may
be viewed as a generalization of a bandlimited estimate that is
suited for real filters.

I. INTRODUCTION

In this paper, we propose a factor graph representation of
continuous-time finite-dimensional linear systems driven by
white Gaussian noise. Specifically, let X ∈ Rn be the state
vector of such a system, which evolves in time according to

Ẋ(t) = AX(t) +BU(t) (1)

where Ẋ denotes the derivative with respect to time and where
the real square matrix A and the real vector B are fixed and
known. The real input signal U(t) is assumed to be real-valued
white Gaussian noise with autocorrelation function

E[U(t+ τ)U(t)] = σ2
Uδ(τ) (2)

where δ(.) denotes the Dirac delta. We are interested in
the relation between X(t0) and X(t1) for arbitrary t0 and
t1 > t0. Note that, for a fixed initial state X(t0) = x(t0),
equation (1) induces a probability density f

(
x(t1)|x(t0)

)
over

the possible values of X(t1), which (unsurprisingly) turns out
to be Gaussian.

The pivotal observation of this paper is that the func-
tion f

(
x(t1)|x(t0)

)
can be used as a building block in

discrete-time factor graphs. Discrete-time linear Gaussian
factor graphs as in [1] are thus extended to include ex-
act models of continuous-time systems of the form (1)
between arbitrary discrete points in time. In consequence,
we immediately obtain efficient algorithms for a variety of
MAP / MMSE / LMMSE estimation problems involving noisy
observations of continuous-time systems at arbitrary sampling

instants. The underlying continuous-time system does not even
need to be time invariant: time invariance is required only
between discrete points in time.

We will describe the following applications:
• The simulation of discrete-time samples of X(tk) for

arbitrary discrete sampling times t0, t1, t2, . . ..
• MAP / MMSE / LMMSE estimation of the state vector
X(tk) for arbitrary instants t0, t1, . . . from noisy discrete-
time observations of Y (t) = CX(t) (for some known
row vector C) at arbitrary sampling times.

• Resampling of sampled filter output Y (t) = CX(t)
(for some known C) from and to arbitrary discrete-time
sampling points.

• MAP / MMSE / LMMSE estimation of the input signal
U(tk) for arbitrary instants t0, t1, . . . from noisy discrete-
time observations. It will be suggested that this estimate
of the input signal may be viewed as a generalization of a
bandlimited estimate of U(t) that is suited for real filters.

We will use Forney-style factor graphs (normal factor
graphs) as in [1] and [2]. In particular, we refer to the
discussion of Gaussian message passing in [1].

The paper is structured as follows. The sum-product mes-
sage computation rules through a node / factor f

(
x(t1)|x(t0)

)
are given in Section II. The mentioned applications are dis-
cussed in Section III and some numerical examples are given
in Section IV.

II. MESSAGE COMPUTATION RULES

The computation rules for the sum-product messages
through a node / factor f

(
x(t1)|x(t0)

)
as defined in Section I

are given in Table I. All messages are Gaussian densities
(up to a scale factor, which we ignore) and parameterized by
the mean vector −→m and the covariance matrix

−→
V for forward

messages or by ←−m and
←−
V for backward messages.

The computation of the forward message amounts to inte-
gration of (1), which is standard [3]. The symmetry between
the forward message and the backward message is obvious
from the decomposition of f

(
x(t1)|x(t0)

)
into N discrete

time steps as shown in Fig. 1. This decomposition is an



TABLE I
COMPUTATION RULES FOR GAUSSIAN MESSAGES THROUGH

NODE / FACTOR f
`
x(t1)|x(t0)

´
WITH t1 > t0 .

X(t0)-

f
`
x(t1)|x(t0)

´
X(t1)-

−→mX(t1) = eA(t1−t0)−→mX(t0) (I.1)
−→
VX(t1) = eA(t1−t0)−→VX(t0)e

AT (t1−t0)

+ σ2
U

Z t1−t0

0
eAτBBT eA

T τdτ (I.2)

←−mX(t0) = e−A(t1−t0)←−mX(t1) (I.3)
←−
VX(t0) = e−A(t1−t0)←−VX(t1)e

−AT (t1−t0)

+ σ2
U

Z t1−t0

0
e−AτBBT e−A

T τdτ (I.4)

mU(t) = σ2
UB

T
“−→
VX(t) +

←−
VX(t)

”−1 `←−mX(t) −−→mX(t)

´
(I.5)

VU(t) →∞ (I.6)
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Fig. 1. Decomposition of the node / factor f
`
x(t+T )|x(t)

´
into N discrete

time steps. The figure is a factor graph as in [1] and N
`
m,σ2

´
denotes a

Gaussian probability density with mean m and variance σ2.

approximation which is exact in the limit N →∞. All claims
in Table I may proved by computing the messages in Fig. 1
using the recipes of [1] and taking the limit N →∞.

A closed-form expression for the integral in (I.2) and (I.4)
for the case where the matrix A is diagonalizable over C is
given in the appendix.

Of particular interest in Table I is (I.5), which is the mean
of the marginal distribution of U(t) for t = t0 or t = t1.
If the overall factor graph is linear Gaussian and cycle free,
mU(t) is the MAP / MMSE / LMMSE estimate of U(t) [1].
Equation (I.6) reminds us that the variance of this estimate
must be infinite because white noise cannot be fully estimated
from discrete samples. Nevertheless, mU(t) can be a highly
useful estimate as will be discussed in Section III-D.
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Fig. 2. Factor graph of continuous-time system with discrete-time observa-
tions Ỹk = ỹk .
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Fig. 3. Splitting the node / factor f
`
x(tk+1)|x(tk)

´
to access the state at

an intermediate point in time t′.

III. APPLICATIONS

A. Simulation of Discrete-Time Samples of X(t) and Y (t)

Assume t0 < t1 < t2 < . . . Samples x(t0), x(t1), x(t2) . . .
of X(t) can be obtained as follows. Assume we have sam-
pled X(tk) = x(tk). Conditioned on X(tk) = x(tk),
X(tk+1) is Gaussian with mean −→mX(tk+1) and covariance
matrix

−→
VX(tk+1) computed according to (I.1) and (I.2) with

−→mX(tk) = x(tk) and
−→
VX(tk) = 0. From this distribution, we

draw a sample x(tk+1), etc.
If the system has also an output Y (t) = CX(t), we may

easily obtain the corresponding samples y(tk) = Cx(tk). In
this way, we can simulate discrete-time samples of filtered
continuous-time white Gaussian noise.

B. State Estimation from Discrete-Time Observations

We now assume that, for discrete times tk, we have obser-
vations

Ỹk = CX(tk) + Zk (3)

where C is a known real row vector and where Z1, Z2, . . .
is discrete-time white Gaussian noise with variance σ2

Z . The
factor graph of such a system model is shown in Fig. 2.

Since such a system is linear Gaussian,
MAP / MMSE / LMMSE estimates of X(tk) may be obtained
by Gaussian sum-product message passing in Fig. 2 as
discussed in [1].

By splitting the node / factor f
(
x(tk+1)|x(tk)

)
as shown

in Fig. 3, such estimates may also be obtained for times t′

between observations.
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C. Output Signal Estimation, Interpolation, and Resampling

It is straightforward to extend state estimation as in the
previous section to estimating the noise-free output

Y (t) 4= CX(t) (4)

at any fixed time t.
For any stochastic process Y (t) representable as filtered

white Gaussian noise, we may thus obtain estimates of Y (t) at
arbitrary points in time based on observations ỹk at arbitrary
discrete times tk. The Fourier spectrum of the estimate is con-
trolled by the ratio σ2

U/σ
2
Z as will be discussed Section III-D.

D. Input Signal Estimation

Using (I.5), state estimation as in Section III-B may be
extended to estimating the input signal U(t) at arbitrary points
in time. The estimated pair

(
û(t), x̂(t)

)
with û(t) = mU(t) as

in (I.5) minimizes
1
σ2
U

∫
u(t)2 dt+

1
σ2
Z

∑
k

(
ỹk − Cx(tk)

)2
(5)

subject to the constraints of the system model. The estimation
thus prefers those frequencies in U(t) that appear with little
damping in Y (t) = CX(t). The variance σ2

U may be viewed
as a regularization parameter that controls the use of power in
frequences outside the passband of the filter in order to fit the
estimated output signal to the observations ỹk.

The spectrum of û(t) is thus shaped by the spectrum of
Y (t), and the MMSE estimate û(t) may be viewed as a
generalization of a bandlimited reconstruction that is suitable
for real filters as opposed to the ideal lowpass filters of the
sampling theorem.

IV. NUMERICAL EXAMPLES

The continuous-time system in the following examples is a
4th-order Butterworth lowpass filter with a cut-off frequency
of fc. The discrete-time observations are regularly spaced and
sampled at a rate of fs = 10fc, and they are subject to discrete-
time additive white Gaussian noise. The signal was simulated
as described in Section III-A.

A. Output Signal Estimaton

The results of a numerical experiment are shown in Fig. 4.
The fat dots show the noisy discrete-time observations ỹk. The
three lines show the interpolation as described in Section III-C
for three different assumed values of σ2

U/σ
2
Z .
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Fig. 5. Input signal estimation for the same discrete-time observations and
the same three assumed values of σ2

U/σ
2
Z as in Fig. 4.

B. Input Signal Estimation

For the same discrete-time observations as in Fig. 4, esti-
mating the input signal as described in Section III-D yields
the results shown in Fig. 5. The different spectral content in
the three plots illustrates the discussion in Section III-D.

V. CONCLUSIONS

We have pointed out that exact models of continous-time
linear systems drived by white Gaussian noise can be used
in discrete-time factor graphs. The associated continous-time
signals thus become computational objects that can be handled
with arbitrary temporal resolution by discrete-time Gaussian
message passing.

We have also pointed out that the MMSE estimate of
the input signal of such a system (based on discrete-time
observations) is a continuous signal that may be viewed as a
generalization of a bandlimited reconstruction that is suitable
for real filters as opposed to the ideal lowpass filters of the
sampling theorem.

APPENDIX

Assume that the matrix A in (1) can be written as

A = Q

 λ1 0
. . .

0 λn

Q−1 (6)

for some complex matrix Q. In this case, the integral in (I.2)
and (I.4) can be solved in closed form:∫ t

0

eAτBBT eA
T τdτ = Q

(
Θ�

(
Φ(t)�Π−Π

))
QH (7)



and∫ t

0

e−AτBBT e−A
T τdτ = Q

(
Θ�

(
Π− Φ(−t)�Π

))
QH

(8)
with

Θ 4=


1

λ1+λ1
· · · 1

λ1+λN

...
. . .

1
λN+λ1

· · · 1
λN+λN

 (9)

Φ(t) 4=


et(λ1+λ1) · · · et(λ1+λN)

...
. . .

et(λN+λ1) · · · et(λN+λN)

 (10)

Π 4= Q−1B
(
Q−1B

)H
(11)

where x denotes the complex conjugate of x, where QH 4= Q
T

denotes the Hermitian transposition of Q, and where � denotes
component-wise multiplication.
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