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ABSTRACT

To respond to reverberation effectively, modern speech pro-
cessing tasks like signal enhancement in digital hearing aids
or distant-talking speech recognition often require precise
knowledge of the acoustic situation. A common measure is
the (frequency-dependent) reverberation time T60. Explicit
measurement using sound excitations is not possible for most
applications, therefore blind estimation of subband T60 from
speech signals is employed. Previous approaches are either lim-
ited to T60 between 0...1.5 s, or require long speech signals and
costly computation. We propose an efficient algorithm that
estimates T60 up to 6 s from short speech signals of no more
than 20 s. In experiments with real room impulse responses
(RIR) the algorithm exhibits state-of-the-art performance for
T60 up to 1.5 s and superior performance for longer T60.

Index Terms— reverberation time, blind estimation,
non-diffuse, low complexity.

1. INTRODUCTION

Late reverberation degrades speech intelligibility by interfering
the clean signal with diffuse sound reflections. This poses a
great challenge to modern speech processing tasks such as
signal enhancement in digital hearing aids or (distant-talking)
automatic speech recognition (ASR). On the other hand, early
sound reflections do not affect speech intelligibility, both for
human hearing [1, 2] and ASR tasks [3]. A common measure
for late reverberation is the reverberation time T60, which
describes the time span until a sound impulse, peaking at 0
decibel (dB), decays from -5 dB to -65 dB. T60 is used e.g. to
steer dereverberation algorithms [4, 5, 6, 7] or to select/adapt
acoustic models in the context of distant-talking ASR [8, 9].

Despite considerable efforts in the past, blind estimation
of T60 from speech signals remains challenging, especially in
highly reverberant, non-diffuse environments with T60 greater
than 1.5 s. Most related work assumes diffuse single-slope
reverberation models [10, 11, 12, 13, 14, 15, 16] to ensure
robustness and computational efficiency. Such an approach
is effective for estimation of T60 ∼ 0...1 s or even 1.5 s, but is
not applicable in highly non-diffuse environments. Estimation
of long T60 is performed accurately in [17] by employing a
two-slope sound decay model rather than a single-slope model
and by restricting estimation to long speech pauses with many
dB of sound decay. The approach delivers accurate estimation
results for T60 ∼ 0...5 s. However, it requires speech signals in
the order of minutes. Another issue is the high computational

complexity of the method, rendering it impractical for (real-
time) applications on mobile devices. In the context of ASR,
acoustic models incorporating two-slope reverberation were
used before: [8, 18, 19] adapt the acoustic model according
to T60. However, [8] uses actual T60 measurements due to the
challenge of estimating T60 accurately. [18, 19] estimate late
reverberation, however indirectly by inference from single-slope
T60 estimates and Early Decay Time (EDT) estimates. As
EDT describes the time needed by a sound to decay from 0
to -10 dB, its robust estimation is even more challenging than
T60, due to non-diffuse early sound reflections (see [17]).

1.1. Contributions

In this paper, we present a low-complexity and recursive
method for blind estimation of subband T60 from single-
channel speech signals. We base our algorithm on an efficient
technique for late reverberation estimation from a room im-
pulse response (RIR) or a speech pause (Section 2). Its core is
a model fitting approach between a late reverberation model
and a sound decay. Second, we describe a free decay region
(FDR) detection method, which improves the one in [17, 20],
to identify sound decays suitable for subband T60 estimation
from speech (Section 3). Fit likelihoods are used to examine
the data structure and to determine, together with other crite-
ria, whether a sound decay is sufficiently similar to one of the
predefined FDR profiles to be accepted for estimation. This
allows fast, flexible and robust identification of useful data.
Third, we show that the challenging T60 estimation in low
frequency bands [12, 17] benefits from Frequency band boosting
(Section 4). This technique essentially smooths signal fluctua-
tions within a subband, but preserves its characteristic decay
rate required for estimation. Experiments show significant
gains in estimation accuracy for low frequency bands.

1.2. Proposed algorithm

The proposed algorithm aims at estimating subband T60
blindly from sound measurements. The first stage decomposes
a speech signal with discrete length N into F octave band sig-
nals x1[1...N ], ...,xF [1...N ], for subband T60 estimation [17].
Frequency band boosting is applied to improve performance
at low frequencies. The second stage converts each subband
signal xf [·] into an envelope signal sf [·] and fits a late rever-
beration model to all sound decays that are potential FDRs.
If a fitted model resembles a FDR closely enough, its T60
estimate is extracted. The final subband T60 estimate is given
by the median of extracted T60 estimates.
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2. LATE REVERBERATION ESTIMATION

We first address the need for an efficient estimation technique
that handles T60 ∼ 0.3...6 s. Single-slope reverberation models
(e.g. [11, 14]) are only applicable for T60 less than 1-1.5 s. Two-
slope models capture highly reverberant scenarios accurately,
but are expensive to compute [17]. Our proposed technique
estimates late reverberation efficiently from impulse responses
or speech pauses and captures even long T60 accurately.

Prior to T60 estimation, we apply recursive smoothing
(RS) to the signal energy of each subband, in contrast to
e.g. [17, 21, 22] who use Hilbert envelopes or rectangular
smoothing for signal pre-processing. The RS envelope s̃[·] of
a subband speech signal x̃[·]1 at discrete time k is defined as

s̃[k] = α x̃2[k − 1] + (1− α) x̃2[k] (1)

with smoothness parameter α ∈ ]0...1[. We found pre-
processing using RS especially beneficial for estimation of
long T60. RS smooths data asymmetrically, only according to
past data, and this resembles a constant, minimum amount of
reverberation, that is introduced into the signal. The resulting
smooth envelope allows robust T60 estimation, as all decay
rates above the minimum level of reverberation, determined
by α, are preserved. The RS envelope of a subband sound
decay is modeled accurately using a two-slope exponential
decay multiplied with a log-normally distributed Gaussian
noise term (see Figure 1). We define the two-slope model of a
sound energy decay with k = 1...K as

Ẽd[k] ,
(
c̃2

1e
−2ρ̃1Tsk + c̃2

2e
−2ρ̃2Tsk

)
w̃[k] (2)

where c̃1, c̃2 > 0 are amplitude constants, ρ̃1 is the EDT decay
rate stemming from early sound reflections, and ρ̃2 is the T60
decay rate from late reverberation (ρ̃1 > ρ̃2 > 0). Ts = 1/fs
marks the sampling period and fs the sampling rate of the
subband signal. The multiplicative, log-normally distributed
noise term w̃[k] ∼ lnN

(
0, σ̃2

w
)
models the signal deflections

of the RS envelope from the ideal model (see Figure 1b). Its
variance σ̃2

w is chosen according to the smoothness parameter
α of the RS envelope. We transform the two-slope model into
the logarithmic dB domain and obtain

Ed[k] = 10 log10
(
c̃2

1e
−2ρ̃1Tsk + c̃2

2e
−2ρ̃2Tsk

)
+ wk (3)

with wk = 10 log10(w̃k) ∼ N
(
0, σ2

w
)
, and σw = 10 log10(σ̃w).

For large k � 1, the late reverberation tail dominates the
sound decay and thus Ed[k] is approximated well by the linear
model

Ed[k]
k�1
≈ 10 log10

(
c̃2

2e
−2ρ̃2Tsk

)
+ wk

= c2 − ρ2Tsk + wk (4)

where c2 = 10 log10(c̃2
2) and ρ2 = 20

ln(10) ρ̃2.

2.1. Estimation using Weighted Least Squares

To estimate ρ2 from a sound decay in the logarithmic domain
s[k] = 10 log10(s̃[k]) with k = 1...K, we fit the model Ed[k]
from Eq. (4) to the late samples of s[k], i.e. for large k. To this
end, we employ weighted least-squares (WLS) minimization,

1From now on we refer to subband signals without subscript.
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Fig. 1: (a) Two-slope decay model with multiplicative noise
w̃k ∼ lnN (0, σ̃w) fitted to the recursive smoothing (RS) enve-
lope of a sound energy decay. (b) The log-normal distribution
describes the multiplicative error between the observed RS
envelope signal and the fitted two-slope model for data in (a).

with a forgetting factor γ < 1 that defines the exponential
weighting. This avoids the early reflections and focuses on the
late reverberation tail:

(ĉ2, ρ̂2) = argmin
c2,ρ2

K∑
k=1

γK−k(s[k]−Ed[k])2 (5)

Eq. (5) is solved efficiently in a recursive fashion using Gaus-
sian message passing in factor graphs [23]. The subband T60
estimate is given by

T̂60 ≈
60
ρ̂2 fs

(6)

3. FREE DECAY REGION DETECTION

Accurate estimation of (long) T60 from FDRs, i.e. sound
decays suitable for estimation, depends on their availability
and quality. In order to cope even with short speech signals,
one must choose wisely which of the few available decay regions
to use. This section describes an effective method to identify
FDRs within subbands of speech signals. In contrast to related
approaches [11, 14, 17], the proposed FDR detection enables
estimation from highly reverberant (T60 up to 6 s), short
(≤ 20 s) speech signals.

Key feature of the proposed method is the effective as-
sessment of data regarding its suitability for T60 estimation.
We introduce FDR profiles to describe minimal requirements
towards a potentially useful sound decay, for different rever-
berant environments. Only if a sound decay fulfills all criteria
of one FDR profile, it is accepted for T60 estimation. FDR
profiles consist of 3 criteria:

1. Minimum amplitude difference
2. Minimum decay length
3. Minimum model fit quality

Figure 2 illustrates all 3 criteria for an exemplary sound decay.
The third property defines, how closely a sound decay must
resemble the fitted model in order to be regarded suitable.
This enables us to detect and sort out data containing large,
unexpected disturbances (e.g. due to speaker interference or
background noise), that hinder accurate T60 estimation.



Fig. 2: To assess the suitability of a sound decay for subband
T60 estimation, we employ FDR profiles, each consisting of
3 criteria: 1. Minimum amplitude difference, 2. Minimum
decay length, 3. Minimum model fit quality (fit likelihood).

3.1. Fit likelihood measure

We measure the quality of a model fit using local likelihood
functions [24]. Given the RS envelope of a sound decay s[k]
with k = 1...K, and Ed[k], the WLS-fitted late reverberation
model from Eq. (4), we calculate the fit likelihood

p(s|Ed) =

(
K∏
k=1

pw(s[k]|Ed[k])γ
K−k

) 1∑K

k=1
γK−k

(7)

where pw(·) is a Gaussian probability density function. In-
tuitively, Eq. (7) describes a weighted mean likelihood to
observe a sound decay s[·], given the fitted model Ed[·]. Ac-
cording to the WLS model fitting in Eq. (5), which uses a
forgetting factor γ to emphasize the late samples of a sound
decay, Eq. (7) also weights the fit quality of late samples
higher. Note that fit likelihoods are independent of the sound
decay length and thus only assess data structure. High fit
likelihoods are produced if a sound decay is very similar to
the fitted model, while disturbed sound decays produce low
fit likelihoods due to unexpected irregularities in the signal.

3.2. Defining FDR profiles

FDR profiles enable us to identify free decay regions within
subband speech signals in an open loop manner, i.e. without
needing to adapt to various reverberant settings adaptively.

We define a FDR profile for little reverberation by: A large
amplitude difference (property 1), short decays (property 2),
high fit likelihoods (property 3). In contrast, a FDR profile for
highly reverberant environments requires long sound decays
(property 2), while the amplitude difference is not too relevant
(property 1). Signal fluctuations are common in settings with
long T60 (e.g. due to room modes), therefore a moderate fit
likelihood threshold (property 3) is used to sort out only data
that exhibits major disturbances. FDR profiles in between
little and high reverberation are defined accordingly.

4. FREQUENCY BAND BOOSTING

Subband T60 estimation from speech is especially challenging
in low frequency bands [12, 17], where, commonly, the longest
T60 are observed. To this end, we propose a new method prior
to subband T60 estimation: The idea is to smooth narrow-
band signal fluctuations, while preserving each Frequency
band’s characteristic decay rate. This is achieved by using L
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Fig. 3: Detected free decay regions (FDR), i.e. sound decays
used for T60 estimation, in 5 octave bands for 10 s of speech.
The robustness of T60 estimates is mainly determined by the
number of correctly identified FDRs in each subband.

bandpass filters within a Frequency band to compute narrow-
band energy signals x̃2

1[·], ..., x̃2
L[·] and then summing up these

narrow-band energy signals to obtain the power spectral den-
sity (PSD) of the Frequency band x̃2[·] =

∑L

l=1 x̃
2
l [·]. Akin

to boosting methods in statistics, by averaging a large num-
ber of frequency-domain energy estimators, a more refined
estimate for the complete subband should be obtained. In-
deed in our experiments, application of this Frequency band
boosting results in significantly improved accuracy in T60 es-
timation within low octave bands (250, 500, 1000 Hz center
frequencies).

Frequency band boosting is exploited efficiently by using
a high-order Fast Fourier Transform (FFT) to calculate the
short-time PSD of a speech signal, e.g. a 1024-point or 2048-
point FFT. As high-order FFTs decompose a signal into a
great number of narrow-band bins, Frequency Band Boost-
ing is performed when summing up narrow-band energies to
calculate the short-time PSD.

5. EXPERIMENTAL SETUP

We validate the techniques introduced in Sections 2-4 using
the proposed algorithm that estimates subband T60 in an
online fashion at low computational cost.

In a first step, the recorded sound signal is decomposed
into its frequency components using a 2048-point Short-Time
Fourier Transform (STFT) with 75% overlap at 22050 Hz
signal sampling rate. The short-time power spectral densi-
ties (PSD) of 5 octave bands (with center frequencies 250,
500, 1000, 2000, 4000 Hz) are calculated by summing up
the squared signal components of the corresponding STFT
bins, which exploits the Frequency band boosting effect (Sec-
tion 4). Subsequently, the RS envelope function is applied
to each subband signal (Section 2). RS only preserves decay
rates above a minimum T60, depending on the smoothness
parameter α. In our experiments, α is chosen so that it al-
lows estimation of T60 ∼ 0.3...6.0 s. Blind T60 estimates are
obtained by recursively minimizing the WLS between late
reverberation model and RS envelope signal (Section 2). We
set the forgetting factor to γ = 0.98, which gives best per-
formance in our experiments. For FDR detection we use 3
FDR profiles with manually chosen properties, characteriz-
ing scenarios with little, medium and high reverberation. In
case a fitted model meets all requirements of a FDR profile
(Section 3), the subband T60 estimate is included into a pool



T60 5 s speech 10 s speech 20 s speech 30 s speech
1.5-6.0 0.70 (±0.30)* 0.48 (±0.21) 0.36 (±0.19) 0.36 (±0.19)
0.75-1.5 0.31 (±0.11) 0.27 (±0.12) 0.25 (±0.11) 0.23 (±0.10)
0.0-0.75 0.12 (±0.03) 0.12 (±0.02) 0.11 (±0.03) 0.12 (±0.03)

Table 1: Mean absolute error of subband T60 estimation [s] using the pro-
posed algorithm, for different speech lengths. (*No estimation available
for 1 speaker in the data set, as no FDR was detected in 1 subband.)

Oct.band 128-point 1024-point 2048-point

250 Hz† 0.42 0.33 0.21
500 Hz† 0.34 0.28 0.20
1000 Hz† 0.27 0.26 0.20

Table 2: Frequency band boosting reduces the mean
absolute error [s]. Results after 20 s of speech with
128-, 1024-, 2048-point FFT. (†center frequency)
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Fig. 4: Subband T60 estimation using proposed algorithm in
5 octave bands (center frequencies 250-4000 Hz). 22 real RIRs
convolved with 16 speech signals of 20 s length.

T60 Löllmann Prego Proposed
1.5-6.0 s 2.40 (±1.77) 2.18 (±1.85) 0.36 (±0.19)
0.75-1.5 s 0.39 (±0.19) 0.22 (±0.06) 0.25 (±0.11)
0.0-0.75 s 0.10 (±0.04) 0.16 (±0.07) 0.11 (±0.03)

Table 3: Mean absolute error of subband T60 estimation [s]
in 5 octave bands (center frequencies 250-4000 Hz), compared
with Löllmann [14], Prego [11]. Results after 20 s of speech.

of 25 recent subband T60 estimates. We use the median of
the pool as the current T60 estimate of the octave band (see
[11]). Post-processing of the raw T60 estimates is performed
using penalized least squares regression across subbands [25],
for moderate cross-frequency smoothing and outlier detection.
This last step improves the robustness of estimation for short
speech signals or with band-limited background noise.

5.1. Data

Experiments are conducted using real room impulse responses
and natural human speech. To this end a comprehensive set of
22 RIRs is obtained from the Open Acoustic Impulse Response
(Open AIR) Library [26]. The featured RIRs comprise a
large variety of broadband T60 ranging from 0.1 to 15.3 s with
source-microphone distances above the critical distance. Many
RIRs exhibit non-diffuse structure with an EDT that is not
directly correlated to T60. This is common in everyday life,
but makes it challenging to estimate T60 accurately. Each RIR
is convolved with 16 single-channel signals of natural human
speech (male and female speakers), which makes a total of

352 reverberant speech files in the data set. Reference values
are measured using Schroeder backward integration [27]. All
subband T60 > 6 s (reference values and estimates) are set to
the maximum considered value T60,max = 6 s.

6. EXPERIMENTAL RESULTS

Figure 4 shows the algorithm’s performance in subband T60
estimation. Each point represents a T60 estimate in one of 5
octave bands, from reverberant speech after 20 s. Compared
to methods by Löllmann et al. [14] and Prego et al. [11], the
proposed algorithm produces state-of-the-art performance for
T60 below 0.75 s and T60 between 0.75 and 1.5 s (see Table
3). For T60 longer than 1.5 s the proposed algorithm clearly
outperforms the other two algorithms, which were designed
to estimate T60 only from diffuse reverberation tails. Table 1
shows the estimation accuracy of the proposed algorithm for
speech signals of 5 to 30 s length. As expected, both mean and
standard deviation of the estimation error decrease for longer
speech signals, due to a greater number of FDRs available.

Frequency band boosting is the key factor responsible for
improved estimation accuracy in low frequency bands, which is
shown in Table 2. When using a 128-point STFT to calculate
the short-time PSD, only one or few bins are available in low
octave bands, which compares to a common band-pass filter.
The more bins make up an octave band, the better signal
fluctuations are smoothed, while the decay rate is preserved.
Thus high-order STFTs with 1024-point or 2048-point improve
estimation accuracy in low octave bands significantly. STFT
orders higher than 2048-point only give minor improvements
in our experiments. Estimation accuracy across all octave
bands can be balanced by adapting the smoothness parameter
α of the RS envelope.

7. CONCLUSIONS

In this work, an online algorithm for blind estimation of T60
was proposed. Experiments with a variety of acoustic environ-
ments and different speakers show superior overall estimation
accuracy compared to two state-of-the-art algorithms. This is
enabled by three main contributions: First, a technique for
efficient, yet accurate late reverberation estimation. Second,
an improved free decay region detection method that assesses
data according to its suitability for T60 estimation, and third,
Frequency band boosting for improved performance in low fre-
quency bands. Due to its low computational cost and quick
availability of new estimates, the proposed algorithm has wide
applicability for various real-time and mobile applications and
may be used e.g. to support dereverberation algorithms in
signal enhancement or distant-talking speech recognition.
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