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Abstract—The paper addresses the estimation of the
continuous-time input signal to a linear sensor that is given in
state-space form. In previous work, Bolliger et al. proposed to
model the input signal as (continuous-time) white Gaussian noise
and derived a corresponding estimator that is based on Kalman
filtering. The present paper elaborates on this new estimator.
In particular, it establishes the continuity (or the piecewise
continuity) of the estimate, presents a new interpolation formula
between samples, complements the Kalman-filter perspective by
a Wiener-filter perspective, and demonstrates practicality by
numerical experiments.

I. INTRODUCTION

Let U(t) and Y (¢) be the real-valued input signal and
output signal, respectively, of some sensor. We are given noisy
samples

Vi = Y(t) + Zy (1)

of Y (t) at discrete moments tx, k € Z, (with tx < tgy1),
where Z; (the measurement noise) are i.i.d. Gaussian random
variables that are independent of U(t) and Y (). From these
samples, we wish to estimate U (¢).

We will assume that the sensor is given by a finite-
dimensional stable linear state-space model with state X € R"
evolving according to

dX(t) = AX(£) dt + bU(¢) dt @)
with A € R"*" and b € R™*!, and with
Y(t) =c"X(2) (3)

with ¢T € R'*" A number of generalizations of this setting
will be indicated at the end of Section IV.

Problems of this sort are usually addressed by beginning
with additional assumptions on U(t). A classical approach is
to assume that U (t) is low-pass filtered Gaussian noise and to
estimate it either by a Wiener filter or by a Kalman smoother
[1], [2]. (For the former, we need stationary conditions and
regular sampling while the latter requires the low-pass filter
to be in state-space form.) More general priors on U (t), such
as splines [3], have also been used, but lead to more complex
estimators. In another approach, U(t) is assumed to be sparse
with respect to some basis, as, e.g., in [4], [5]. Yet another
approach is proposed in [6]. The stated problem is also related
to equalization problems in communications, cf. [7]-[9].

However, in many practical applications, the actual sensor
input signal is, strictly speaking, neither bandlimited nor
sparse: better sensors might reveal ever more details in the
signal. Nonetheless, we need to cope with the given sensor,
as well as we can.

A new approach to such estimation problems was proposed
(among other things) by Bolliger et al. in [10], [11]. In this
approach, U(¢) is modeled as white Gaussian noise (WGN)—
not because the unknown true input signal is expected to
resemble WGN, but to avoid unwarranted assumptions on its
spectrum. It is shown in [10], [11] that modeling U (¢) as WGN
leads to a practical estimator that is easily computed on the
basis of forward-backward Kalman filtering/smoothing.

The definition of the estimate #(t) from [10], [11] can be
paraphrased as follows. For A > 0, let

t
A

fJ(t,A):Z .

U(r)dr. 4)
If U(t) is a continuous signal, then lima o U (¢, A) = U(t).
Assume now that U(t) is white Gaussian noise. Then, for
fixed t, U(t, A) is a well-defined zero-mean Gaussian random
variable with variance o7, /A for some constant o7, > 0. The
MAP/MMSE/LMMSE estimate of (¢, A) from observations
{Yi = yxtis

(t,A) =E|UtA){Yi =y}, (5)
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and 4(t) is defined as

~ AN . Z

a(t) = ilino u(t,A). (6)
The existence of this limit was shown in [11]. The practical
computation of #%(t) will be reviewed in Section II.

In this paper, we report several new theoretical and ex-
perimental results on this estimator. In the theory part, we
show, in particular, that @(¢) is smooth (i.e., continuous and
infinitely often differentiable) between sampling times . In
fact, the smoothness is obvious from a new expression for
() between sampling times that is attractive also for practical
computations. We also show that 4(t) is continuous even for
t € {tx} if ¢'b = 0. In addition, we give a Wiener-filter
version of the estimate (6) that further illustrates the nature of
this estimate.



In the experimental part, we report not only some simulation
results, but also measurements with a real sensor in an
industrial setting similar to [12].

The proofs of Theorems 2 and 3 use factor graphs as in
[11], [13], but factor graphs are not otherwise used in this
paper.

The paper is structured as follows. Section II reviews the
required background from [11]. The new theoretical results are
presented in Sections IIT and IV, and the experimental results
are given in Section VL.

II. BACKGROUND FROM PREVIOUS WORK
As shown in [11], the estimate (6) is given by

u(t) = o b W (t) (mx(t) - mX(t)) (7N
with

W) 2 (Vao + Vo) - ®)

The column vectors mx(t) and %X(t) in R™ and the matrices

7X(t) and Vx(t> in R™*™ are defined as follows. For t; <
t < tpy1, the forward message ﬁX(t) is the function

7x(t) (z(®) = p(z@®)| Yk Yr-1,--- ) 9
i.e., the probability density of X (¢) conditioned on the past
observations Y, = yp, £ < k; mx(t) is the mean vector of
this density and VX(t) is its covariance matrix. Likewise, the
backward message ﬁx(t) (for t, <t < tg41) is the likelihood
function

Tx ey () = p(Yhs1, Yt - - - |2(1)), (10)

which may be viewed (up to a scale factor) as a Gaussian
density in x(¢) with mean vector <n_1x(t) and covariance matrix

x(¢)- The estimate (7) remains correct even in the limit when

some (or all) eigenvalues of 7X(t) and/or of V x4y go to zero
or to infinity.

The recursive computation of mx(t) and V x(;) amounts to
the state-prediction recursion of Kalman filtering, and Ex(t)

and V() may be computed by an analogous backward
recursion [11], [13]. (On-line computation of (7) is possible
with sufficient look-ahead.)

For numerical computations, it may be preferable to use the
formular (7) only for t € {¢}}, and to use the new interpolation
formula (12) for any intermediate moments ¢. Note also that,
in a stationary situation with constant intervals 41 — ¢, the
covariance matrices V x () and Vx(,) (and thus W(tk)) do
not depend on k£ and may be computed offline, as is usual in
Kalman filtering.

We also recall the following variational characterization of
4(t) from [10], [11]:

Theorem 1. Assume that observations Y = Y (ty) + Zj are
only available for k¥ = 1,2,..., K. Then the estimated pair
(a(t),2(t)) with @(t) as in (7) and with the corresponding
state estimate Z(¢) minimizes

K
1 [ 1
— a(t)? dt + —

— T 2
7 ) 77 gm0
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Fig. 1. Factor graph for interpolation with ¢/ = ¢+ A > t.

among all piecewise continuous' functions 7 (t). a

The fact that the estimate (7) is indeed piecewise continuous
will be established in Section III.

ITI. INTERPOLATION AND CONTINUITY OF 4(t)

Theorem 2 (Interpolation). Assume that both ¢ and
t' =t + A lie between adjacent sampling times t; and ¢ 1,
ie., t <t <tgpy1 and tp <t <tgy1. Then

ﬁ(t/) = UQUbTe_ATA W(t) (HX(t) — mx(t)> . (12)

a

Note that A may be negative. It is obvious that (12) is a smooth
function of A, which proves that @(t) is smooth between
sampling times.

The proofs of the two theorems in this section assume some
familiarity with factor graphs [13].

Proof of Theorem 2: From (7), we have

ﬁ(t/) = U%bTW(t/) (mx(t/) - mx(t/)) . (13)

Now consider Fig. 1, which shows a factor graph of the joint
probability density of the relevant variables (cf. [11]). Using
Tables 2 and 3 of [13] (specifically, equations (II.9), (II.10),
(I1.12), (II1.2), and (II1.8) from these tables), we have, first,

mX(t/) = ey 1), (14)
then ﬁx(t) = e’AA%_iX(t/) and thus
@) = e x ), (15)
and finally W (t) = eATA W (t')eA2 and thus
W(t) = e A2 W (t)e 2. (16)
Inserting these expressions into (13) yields (12). O
Theorem 3 (Continuity at sampling times). If ¢'b = 0,
then @ (¢) as in (6) is continuous also for ¢ € {t}. O

Conversely, if ¢"b # 0, then () is generically not continuous
for t € {tr}, as is evident from many examples.

Proof of Theorem 3: We have to show that

ilinou(tk’ A) = Alglou(tk +AA) (17)

IThe qualifier “piecewise continuous” is missing in [11]; in fact, the last
step (eq. (33)) of the proof given in [11] is incorrect, but it is correct in [14].



if ¢"b = 0. The relevant part of the factor graph for the left-
hand side of (17) is shown in Fig. 2 (top), and the relevant part
of the factor graph for the right-hand side of (17) is shown in
Fig. 2 (bottom). The former represents the equations

X(tr) = X (te) + bAU (tr, A) (18)

and
Y (tr) = ¢ X (ty) (19)
= "X (tg) 4+ ¢"bAU (11, A). (20)

If ¢'h = 0, then (20) reduces to Y (t;) = ¢'X(tz), in
which case Fig. 2 (top) is equivalent to Fig. 2 (middle). But
for A — 0, Fig. 2 (bottom) also turns smoothly into Fig. 2
(middle). O

IV. WIENER FILTER PERSPECTIVE

In a stationary situation with ¢; = k7T for fixed T' > 0, the
MAP/MMSE/LMMSE estimate (6) can also be obtained via a
version of a Wiener filter [1], [2] as follows. Let G(w) be the
frequency response of the sensor, i.e., the Fourier transform
of the impulse response of the system given by (2) and (3).
Let Z denote the complex conjugate of z € C.

Theorem 4. Under the stated assumptions,
a(t)= Y Yih(t—kT) (21)
k=—o0

where h(t) is given by its Fourier transform

G
H(w) = (”)2 s (22)
SR

Mixed discrete/continuous-time Wiener filters as in (21) are
not usually covered in textbooks, and we have not yet been
able to find filters similar to (22) in the literature. In any case,
deriving a proof from the orthogonality principle of LMMSE
estimation [1], [2] is straightforward.

A main point of Theorem 4 is that it further illuminates
the nature of the estimate (6). For example, consider the two
amplitude responses |G (w)| in Fig. 3. The dashed lines in this
figure show the aliasing term |G(w + 2%)|. As long as such
aliased parts of G(w) remain substantially below the noise-to-
signal ratio 0% /o7, the aliasing does not materially affect the
estimate (t).

It should be noted, however, that the Kalman-filter approach
(7) is more general than the Wiener filter of Theorem 4. In par-
ticular, the Kalman-filter approach works also for nonuniform
sampling, and it generalizes easily to time-varying systems
(e.g., unstable systems under digital control as in [15]) and to
mildly nonlinear systems (via local linearisation as in extended
Kalman filtering [1]).
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Fig. 2. Factor graph segments used for the proof of Theorem 3.
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Fig. 3. The amplitude response of two sensors of order 2 and 4, respectively.

The horizontal axis is the normalized frequency f/fs with fs = 1/T. The
dashed lines show the aliasing.

V. POSTFILTERING

While the estimate (6) is piecewise continuous (and smooth
between sampling times), the user of the sensor may some-
times prefer a smoother-looking estimate of U (¢). In this case,
the estimate (6) may simply be passed through a suitable low-
pass filter (preferably with linear phase response).

Such postfiltering is similar, in effect, to estimating U ()
under the traditional assumption that it is bandlimited. How-
ever, the results of the two approaches are not identical,
as is easily seen from (22). Moreover, in a Kalman filter
setting (as in Sections II and III), the traditional assumption
requires a state space model of the noise-shaping filter to be
included in the Kalman filter, which increases its complexity;
by contrast, postfiltering the estimate (7) does not affect the
Kalman filtering at all.

It should be noted that postfiltering (6) is, in principle, a
continuous-time operation. A practical time-domain algorithm
with piece-wise analytical solutions based on (12) will be
discussed elsewhere.

VI. EXPERIMENTAL RESULTS

Fig. 3 shows the amplitude response of two different sensor
models, one of order n = 2 and the other of order n = 4,
which both originate from fitting low-order models to the mea-
sured impulse response of real-world sensors in an industrial
setting. The 4th-order model turns out to satisfy ¢'b = 0 while
c"b # 0 for the 2nd-order model. Figs. 4-6 show simulation
results with these models for high signal-to-noise ratio o, /.
Note that the input signal in these simulations has effective
discontinuities, which is not uncommon for real signals (e.g.,
forces when moving objects collide). Note also that the input
signal is nonnegative, of which the estimator is ignorant.

Fig. 6 shows the input estimate for the 2nd-order model in
microscopic detail. It is apparent that the estimated signal is
not continuous at the sampling moments, which is due to the
fact that ¢Tb # 0 in this case (cf. Theorem 3). By contrast, the

estimate in Fig. 4 is continuous everywhere in consequence of
Theorems 2 and 3.

Fig. 7 illustrates the use of the 4th-order model with mea-
sured real-world data. In this case, the true input signal is not
known, but a better (more expensive) reference sensor provides
a good guess of it. Moreover, the actual sensor dynamics has
slightly changed during operation while the estimation uses
the unchanged 4th-order model. The estimate is smoothed by
postfiltering as in Section V. Due to the uncertainties of the
situation, it is difficult to assess the quality of the estimate
in absolute terms, but it can certainly be concluded that the
estimator works very well in practice.

(The estimated signal in Fig. 7 is sometimes clearly nega-
tive. This seems to be due to a bias in the measurement set-up,
not due to a problem with the estimator.)

VII. CONCLUSION

We have presented a number of new theoretical and experi-
mental results on the input-signal estimator that was proposed
by Bolliger et al. [10], [11]. In particular, we have established
continuity (or piecewise continuity if ¢"b # 0) of the estimate,
we have complemented the Kalman-filter perspective of [10],
[11] with a Wiener-filter perspective, and we have given exper-
imental results that confirm the practicality of the estimator.

REFERENCES

[1] B. D. O. Anderson and J. B. Moore, Optimal Filtering. Prentice Hall,
NJ, 1979.

[2] T. Kailath, A. H. Sayed, and B. Hassibi, Linear Estimation. Prentice
Hall, NJ, 2000.

[3] G. Wahba, Spline models for observational data. Philadelphia, PA:
SIAM, 1990.

[4] P. L. Dragotti, M. Vetterli, and T. Blu, “Sampling moments and recon-
structing signals of finite rate of innovation: Shannon meets StrangFix,”
IEEE Trans. Signal Proc., vol. 55, no. 5, May 2007, pp. 1741-1757.

[5] M. Mishali, Y.C. Eldar, and A. J. Elron, “Xampling: signal acquisition
and processing in union of subspaces,” IEEE Trans. Signal Proc., vol. 59,
no. 10, pp. 4719-4734, Oct. 2011.

[6] S. Gillijns and B. de Moor, “Unbiased minimum-variance input and
state estimation for linear discrete-time systems,” Automatica, vol. 43,
pp. 111-116, 2007.

[71 J. G. Proakis, Digital Communications, 5th ed., McGraw-Hill, 2007.

[8] M. Tiichler, A. C. Singer, and R. Koetter, “Minimum mean squared
error equalization using a priori information,” IEEE Trans. Signal Proc.,
vol. 50, no. 3, March 2002.

[9]1 H. Wymeersch, Iterative Receiver Design. Cambridge University Press,
2007.

[10] L. Bolliger, H.-A. Loeliger, and C. Vogel, “Simulation, MMSE estima-
tion, and interpolation of sampled continuous-time signals using factor
graphs,” 2010 Information Theory & Applications Workshop, UCSD,
La Jolla, CA, USA, Jan. 31 — Feb. 5, 2010.

[11] L. Bolliger, H.-A. Loeliger, and C. Vogel, “LMMSE estimation and
interpolation of continuous-time signals from discrete-time samples
using factor graphs,” arXiv:1301.4793v1.

[12] Y. Altintas and S. S. Park, “Dynamic compensation of spindle-integrated
force sensors,” CIRP Annals — Manufacturing Technology, vol. 53, no. 1,
pp- 305-308, 2004.

[13] H.-A. Loeliger, J. Dauwels, Junli Hu, S. Korl, Li Ping, and F. R. Kschis-
chang, “The factor graph approach to model-based signal processing,”
Proceedings of the IEEE, vol. 95, no. 6, pp. 1295-1322, June 2007.

[14] L. Bolliger, Digital Estimation of Continuous-Time Signals Using Factor
Graphs. PhD Thesis No. 20123 at ETH Zurich, 2012.

[15] H.-A. Loeliger, L. Bolliger, G. Wilckens, and J. Biveroni, “Analog-to-
digital conversion using unstable filters,” 2011 Information Theory &
Applications Workshop, UCSD, La Jolla, CA, USA, Feb. 6-11, 2011.



T T I I
—— estimated input signal —— estimated input signal
I —— actual input signal N - — actual input signal R
- - - observed output signal - - - observed output signal
= L ] 2y N
:
S S
g )
0
| |
0 50 100 150 200
[samples] [samples]
Fig. 4. Input signal estimation (simulation) for 4th-order model of Fig. 3 ~ Fig. 5. Input signal estimation (simulation) for 2nd-order model of Fig. 3
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Fig. 6. Close-up of Fig. 5 around a jump of the input signal. Fig. 7. Input signal estimation from real-world measured data using the 4th-

order model of Fig. 3 and postfiltering as in Section V.





