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Abstract—Surprisingly many signal processing problems can
be approached by locally fitting autonomous deterministic linear
state space models to the data. In this paper, we introduce local
statistical models for such cases and discuss the computation
both of the corresponding estimates and of local likelihoods for
different models.

I. INTRODUCTION

We consider signal processing problems involving deter-
ministic state space models as follows. Let y1, . . . , yN ∈ R
(with N � 1) be a given signal that is to be analyzed.
For k = 0, 1, . . . , N , let xk ∈ Rm be a vector that evolves
according to

xk+1 = Axk (1)

where A ∈ Rm×m is a non-singular square matrix. Note that
the state xk at any time k completely determines the whole
state trajectory x0, x1, . . . , xN . A corresponding output signal
ỹ1, . . . , ỹN ∈ R is defined by

ỹk = cTxk (2)

where cT is a given row vector. At any time n ∈ {1, 2, . . . , N},
we locally fit this model to the given signal y1, . . . , yN ∈ R
by forming an estimate x̂n defined by

x̂n
4
= argmin

xn∈S

N∑
k=1

γ|n−k|
(
yk − ỹk(xn)

)2
(3)

where γ is a real parameter with 0 < γ < 1, where
ỹ1(xn), . . . , ỹN (xn) is the output signal determined by xn
according to (1) and (2), and where S ⊂ Rm is an admissible
set for x̂n. We will be primarily interested in the case where
1� n� N so that boundary effects can be neglected.

Note that, in general, these estimates x̂n will not satisfy
x̂n+1 = Ax̂n.

In a variation of (3), the estimate (3) is replaced by

x̂n
4
= argmin

xn∈S

n∑
k=1

γn−k
(
yk − ỹk(xn)

)2
, (4)

which amounts to online estimation using only the past values
y1, . . . , yn of the signal.

What we may want to do with these estimates x̂n depends
on the application, cf. the examples in Section II. In any case,

we will also be much interested in assessing the quality of the
least-squares fit (3) or (4) in a way that allows a meaningful
comparison of different models, even with different parame-
ter γ.

Note also that the choice S = {0} turns any model of the
form (1) and (2) into a noise-only model with clean signal
ỹk = 0 for all k, which may serve as a reference in detection
problems.

Computing a single estimate (3) or (4) is a least-squares
problem, and all estimates x̂1, . . . , x̂N can be computed simul-
taneously by variations of recursive least-squares algorithms.

In this paper, we convert these least-squares problems into
equivalent statistical Gaussian estimation problems. We then
show that all the following quantities can be both meaningfully
defined and efficiently computed by recursions similar to those
in Kalman filtering.

1) Local state estimates x̂n as above.
2) A normalized local likelihood function

p̆n(y1 . . . , yN ;xn) ∝ pn(y1, . . . , yN |xn) (5)

that remains finite for N →∞.
3) Local estimates of the noise variance σ2

and the corresponding normalized likelihood
maxσ p̆n(y1, . . . , yn;xn).

4) A new measure of local typicality that allows meaningful
comparisons of models with different damping γ.

While the first of these items is quite obvious, the others are
new (to the best of our knowledge).

The paper is structured as follows. Some illustrative ex-
amples are given in Section II. The conceptual contributions
of the paper are described in Sections III and IV. The
actual algorithms (efficient recursions) and the corresponding
estimates are given in Sections V and VI, respectively.

II. EXAMPLES

The broad scope of signal processing problems that are
amenable to the approach of this paper is indicated by the
following three examples.

Example 1 (Straight-Line Fitting) Let

A =

(
1 1
0 1

)
(6)
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Fig. 1. Two examples of gestures (sweeps with an earphone magnet) as seen
by the three channels of a 3-D magnetometer in a smartphone [5].

and cT = (1, 0). The corresponding output signal (2) is a straight
line, the slope of which is the second component of the state vector
xk. The estimate (3) with S = R2 thus amounts to fitting a straight
line to the signal y1, . . . , yN around time n. 2

The generalization of this example to polynomials is straight-
forward. Similar ideas have been described, e.g., in [1,
Sec. 3.11], [2], [3].

The new results of this paper allow to evalute the goodness
of such a straight-line fit (or of a polynomial fit) for different
damping parameter γ (i.e., for different effective window size),
for any time n independently, which can be used, e.g., for the
detection of lines (or polynomials) or for adaptive smoothing.

Example 2 (PLL and Detection of a Sinusoid) Let

A =

(
cos(Ω) − sin(Ω)
sin(Ω) cos(Ω)

)
(7)

and cT = (1, 0). The corresponding output signal (2) has the form

ỹk = β cos(Ωk + ϕ), (8)

where the amplitude β > 0 and the phase ϕ are determined by xn.
From the local least-squares estimate (3) or (4) with S = R2, we

obtain a local estimate ϕ̂n of the phase ϕ. If, around time n, the
signal indeed contains a sinusoid with a frequency close to Ω, then
the estimates x̂n and ϕ̂n will lock to this sinusoid. 2

A very similar method was proposed in [4], except that
localization in [4] is achieved with input noise rather than
with a damping factor γ. The results of the present paper allow
to use this PLL also for the local detection of a sinusoid at
unknown signal-to-noise ratio.

Note that Examples 1 and 2 are meaningfull both with
offline estimation as in (3) and with online estimation as in (4).

In the following example, the matrix A in (1) is not constant,
but depends on the sign of n− k.

Example 3 (Gesture Detection with Magnetic Sensors) Con-
temporary smartphones contain a magnetometer that measures the
magnetic field in three dimensions. Sweeping over the phone with
a magnet (such as the magnet in typical earphones) results in 3-
channel signals as shown in Figure 1. Such gestures can be used to
give commands to the phone.

The detection of, and distinction between, such gestures can be
based on local state space models of the form

A = ρ

(
cos(Ω) − sin(Ω)
sin(Ω) cos(Ω)

)
(9)

with ρ > 1 for k < n and ρ < 1 for k ≥ n and with cT = (1, 0).
Moreover, the time-n state of the time-n model is restricted to be a
scalar multiple of some vector s ∈ Rm, i.e., S = {βs : β ∈ R}.
The parameters ρ and s are chosen such that the signal (2) roughly
approximates the clean sensor signal as in Figure 1. Multiple time
scales (parameters ρ and γ) are necessary to detect gestures with
different velocity and at different distance from the phone. 2

The restriction of xn to a set S as in Example 3 is an
example of a glue factor as in [3], [6], [7], and the approach
of this paper is easily adapted to more general glue factors.

III. LOCAL STATISTICAL MODEL

We now convert the least-squares problem (3) into an
equivalent statistical estimation problem. (Problem (4) can be
handled analogously.) To this end, we define, for each time
n ∈ {1, . . . , N}, the Gaussian probability density

pn(y1, . . . , yN |xn)
4
=

N∏
k=1

1√
2πσk

exp

(
−
(
yk − ỹk(xn)

)2
2σ2

k

)
(10)

with
σ2
k
4
= σ2γ−|n−k| (11)

and where σ > 0 is a free parameter. For any fixed σ, we
clearly have

argmax
xn∈S

pn(y1, . . . , yN |xn) = x̂n (12)

with x̂n as in (3).
In the following, however, we prefer to work with the

function (not a probability density)

p̆n(y1, . . . , yN ;xn)

4
=

N∏
k=1

(
1√
2πσ

exp

(
−
(
yk − ỹk(xn)

)2
2σ2

))γ|n−k|

(13)

=

N∏
k=1

(
1√
2πσ

)γ|n−k|

exp

(
−
(
yk − ỹk(xn)

)2
2σ2

k

)
, (14)

which we will call the local likelihood function.
For fixed σ, we have

p̆n(y1, . . . , yN ;xn) ∝ pn(y1, . . . , yN |xn) (15)

where “∝” denotes equality up to a scale factor, and thus

argmax
xn∈S

p̆n(y1, . . . , yN ;xn) = x̂n (16)

with x̂n as in (3). However, while

lim
N→∞

pn(y1, . . . , yN |xn) = 0 (17)

for every xn and every y1, y2, . . . , the quantity
limN→∞ p̆n(y1, . . . , yN ;xn) is generically finite and
nonzero, as will become obvious in Section V. Moreover,
estimation of σ2 from (10) yields absurd results for N →∞
(because of the factor

∏N
k=1 σ

−1). By contrast, σ2 is properly
localized in (13) and the estimate

σ̂2
n
4
= argmax

σ2

max
xn∈S

p̆n(y1, . . . , yN ;xn) (18)
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Fig. 2. The probability distribution p̃ from (23) and its Gaussian approxima-
tion (dotted) for two values of γ.

turns out to be the normalized squared error

σ̂2
n =

1

νn

N∑
k=1

γ|n−k|
(
yk − ỹk(x̂n)

)2
(19)

where

νn
4
=

N∑
k=1

γ|n−k| (20)

is the effective window size.
A closely related quantity is the local log-likelihood

Ln
4
= log

(
max

σ2, xn∈S
p̆n(y1, . . . , yN ;xn)

)
(21)

= −νn log
(
σ̂n
√

2πe
)
. (22)

For fixed y1, . . . , yN , different local models with the same
parameter γ can be compared, at each time n, using either
σ̂2
n or Ln. In particular, any local model can be compared

with the noise-only model (S = {0}). Efficient recursions for
the computation of the sequences σ̂2

1 , . . . , σ̂
2
N and L1, . . . , LN

will be derived in Sections V to VI.

IV. COMPARING MODELS OVER DIFFERENT WINDOWS
BY MEANS OF LOCAL TYPICALITY

In order to compare models with different damping param-
eter γ (i.e., different effective window size), we propose the
quantity

p̃(L̃n) (23)

where
L̃n

4
= −Ln

νn
(24)

and where p̃ is a probability density with mean (34) and
variance (35) that will be defined in Section IV-D. For γ close
to 1, p̃ is well approximated by a Gaussian distribution, as
illustrated in Figure 2.

We first explain the basic idea behind (23) in a setting
outside the context of this paper.

A. The Basic Idea

Forget, for a moment, the context of this paper and consider
the following hypothesis testing problem involving random
variables Y1, . . . , YN and two hypotheses H1 and H2. Under
H1, the variables Y1, . . . , YN are i.i.d. with known distribution
p(y); under H2, Y1, . . . , YK (with K < N ) are i.i.d. with the
same distribution p(y), but the distribution of YK+1, . . . , YN
is unknown and arbitrary.

One approach1 to this problem is to define

LN
4
= − 1

N

N∑
k=1

log p(Yk) (25)

and to decide between H1 and H2 based on a comparison
between pN (LN ) and pK(LK), where pN (.) is the probability
distribution of LN under H1. The probability distribution pN
has the following properties:

• Mean:

E[LN ] = −E
[

log p(Y1)
]
, (26)

the entropy of p(Y1).
• Variance:

Var[LN ] =
1

N
Var
[

log p(Y1)
]

(27)

• Concentration: For N → ∞, pN (LN ) will concentrate
around its mean and will converge to a Gaussian distri-
bution.

In consequence, if the true hypothesis is H1 and both N � 1
and K � 1, then

log
pN (LN )

pK(LK)
≈ log

√
N

K
(28)

with probability close to one. By contrast, if the true hy-
pothesis is H2 and N − K � 1, it is to be expected that
pN (LN ) < pK(LK).

If p(y) is Gaussian, then, under H1, pN is a shifted and
scaled version of a chi-squared distribution. However, this
property will not carry over to the exponential-window setting
of this paper.

Note that pN (LN (y1, . . . , yN )) may be viewed as a quan-
titative measure of typicality of the sequence y1, . . . , yN :
for sufficiently large N , pN (LN (y1, . . . , yN )) is large if
log p(y1, . . . , yn) is close to its mean, and small otherwise.

Finally, we note that this approach generalizes easily to the
case where H2 uses i.i.d. variables Y ′1 , . . . , Y

′
K with distribu-

tion p(y′) different from p(y), and it generalizes even to non-
i.i.d. variables provided that log p(Y1, . . . , Yn) concentrates to
its mean (i.e., satisfies an asymptotic equipartition property
[8]).

1It is unlikely that this approach is new, but we have not yet spotted it in
the literature.



B. Gaussian Case

Assume now that p(y) is Gaussian with known mean
and known variance σ2. In this case (using the Gaussian
approximation of the chi-squared distribution), a sign test of
log pN (LN )− log pK(LK) boils down to a sign test of(
K

(
q2K
σ2
− 1

)2

− 2 logK

)
−

(
N

(
q2N
σ2
− 1

)2

− 2 logN

)
(29)

where q2K and q2N denote the empirical variance of Y1, . . . , YK
and Y1, . . . , YN , respectively. (The details are omitted).

As stated, the test (29) decides against a hypothesis not only
if its likelihood is untypically small, but also if its likelihood
is untypically large. If this is undesirable—and it is in our
context— we may always decide in favor of H1 if qN ≤ qK
and use the test (29) only if q2N > q2K .

C. What If σ2 Needs to Be Estimated?

Assume now that p(y) is Gaussian with known mean (as
above), but σ2 is not known and must be estimated from the
data. It is not clear how this can be done in a principled way.

Estimating σ2 separately for both hypotheses does not work:
the natural estimate of σ2 is the empirical variance (q2N or q2K)
of the data, which, when plugged into pN (LN ) (or pK(LK),
respectively) always indicates perfect typicality andH1 always
wins.

A pragmatic proposal is to estimate σ2 as

σ̂2 =
√
q2Nq

2
K , (30)

which seems to work reasonably well.

D. Application to Local Statistical Models

We now adapt the idea of Sections IV-A–IV-C to the
situation of this paper. (Concerning notation, we undefine all
symbols defined in Sections IV-A–IV-C.) In particular, we now
proceed to define the probability distribution p̃ in (23).

To this end, we need a distribution p̃n(y1, . . . , yN ) that re-
flects the idea that the given model is true (at least) throughout
the effective window of the model. (The localized distribution
(10) does not do this.) An arguable embodiment of this idea
is the distribution

p̃n(y1, . . . , yN )
4
=

N∏
k=1

1√
2πσ̂

exp

(
−
(
yk − ỹk(x̂n)

)2
2σ̂2

)
(31)

where x̂n is pragmatically chosen to be the maximizer in (21).
For σ̂2, we propose the idea of (30), where the corresponding
estimates of σ2 for each model are obtained as described in
Section VI.

Under the hypothesis that Y1, . . . , YN are random variables
with probability law (31), L̃n is a random variable with
distribution p̃(L̃).

In order to understand the distribution p̃(L̃), consider

L̃ =
1

νn

N∑
k=1

γ|n−k|

(
log
√

2πσ̂ +

(
Yk − ỹk(x̂n)

)2
2σ̂2

)
. (32)

Note that (
Yk − ỹk(x̂n)

σ̂

)2

(33)

is chi-squared with one degree of freedom and has mean 1
and variance 2. It follows that the mean of (32) is

E[L̃] = log(
√

2πσ̂) + 1/2 (34)

and the variance of (32) is

Var[L̃] =
1

2ν2n

N∑
k=1

γ2|n−k|; (35)

for 1� n� N , (35) becomes

lim
1�n�N

Var[L̃] =
1

2
(1− γ)

1 + γ2

(1 + γ)3
(36)

It is then clear from (32) that p̃(L̃) concentrates around its
mean (34) and becomes Gaussian for γ → 1.

V. RECURSIVE COMPUTATION OF p̆n(y1, . . . , yN ;xn)

For fixed y1, . . . , yN , the function p̆n(y1, . . . , yN ;xn) can
be computed for all n ∈ {1, . . . , N} with a total complexity
that grows linearly with N . For this computation, we define
the functions

−→µn(xn)
4
=

n∏
k=1

(
1√
2πσ

exp

(
−
(
yk − ỹk(xn)

)2
2σ2

))γn−k

(37)
and

←−µn(xn)
4
=

N∏
k=n+1

(
1√
2πσ

exp

(
−
(
yk − ỹk(xn)

)2
2σ2

))γk−n

(38)
which satisfy

−→µn(xn)←−µn(xn) = p̆n(y1, . . . , yN ;xn). (39)

(The analogous approach to the least-squares problem (4)
requires only the forward recursion for −→µn; the quantity ←−µn
is not needed.)

In order to cope with applications as in Example 3, we will
allow that a different matrix A in (1) is used for the past of
the time-n model than for its future, i.e.,

xk+1 =

{
Apxk for k < n
Afxk for k ≥ n. (40)

Beginning with −→µ0(x0) =←−µN (xN ) = 1 (for all x0 and all
xN ), we then have the recursions

−→µn(xn) =

(−→µn−1(A−1p xn)
)γ

√
2πσ

exp

(
−
(
yn − cTxn

)2
2σ2

)
(41)

and

←−µn(xn) =

(←−µn+1(Afxn)√
2πσ

exp

(
−
(
yn+1 − cTAfxn

)2
2σ2

))γ
.

(42)



The functions −→µn and ←−µn can be parameterized as
−→µn(x)

= exp

(
−x

T−→Wnx− 2xT
−→
ξ n +−→κn

2σ2
−−→ν n log

√
2πσ2

)
,

(43)

and
←−µn(x)

= exp

(
−x

T←−Wnx− 2xT
←−
ξ n +←−κn

2σ2
−←−ν n log

√
2πσ2

)
,

(44)

respectively, where
−→
Wn and

←−
Wn are squares matrices,

−→
ξ n and←−

ξ n are column vectors, and −→κn,←−κn, −→νn and←−νn are scalars.
In terms of these parameters, the recursion (41) becomes

−→
Wn = γ

(
A−1p

)T−→
Wn−1A

−1
p + ccT (45)

−→
ξ n = γ

(
A−1p

)T−→
ξ n−1 + ync (46)

−→κn = γ−→κn−1 + y2n (47)
−→νn = γ−→νn−1 + 1 (48)

with the initializations
−→
W0 = 0,

−→
ξ 0 = 0, −→κ0 = 0, and −→ν 0 = 0.

Similarly, the recursion (42) becomes
←−
Wn = γ

(
AT

f
←−
Wn+1Af +AT

f cc
TAf

)
(49)

←−
ξ n = γ

(
AT

f
←−
ξ n+1 + yn+1A

T
f c
)

(50)
←−κn = γ

(←−κn+1 + y2n+1

)
(51)

←−νn = γ (←−ν n+1 + 1) (52)

with the initializations
←−
WN = 0,

←−
ξN = 0, ←−κN = 0, and

←−νN = 0.
Finally, we obtain from (39)

p̆(y1, . . . , yN ;xn)

= exp

(
−x

T
nWnxn − 2xTnξn + κn

2σ2
− νn log

√
2πσ2

)
(53)

with Wn =
−→
Wn +

←−
Wn, ξn =

−→
ξ n +

←−
ξ n, κn = −→κn +←−κn, and

νn = −→ν n +←−νn.
We conclude this section with some remarks:
1) The parameters κn and νn are not required for state

estimation, but they are needed for the computation of
σ̂2
n, see Section VI.

2) The parameter νn = −→νn +←−ν n agrees with (20), and it
can easily be computed in closed form; in particular,

lim
1�n�N

νn =
1 + γ

1− γ
(54)

3) The computation of the parameters Wn and ξn amounts
to a recursive least-squares algorithm with forgetting
factor γ. However, standard recursive least-squares al-
gorithms use only a single recursion while we here need
both a forward recursion and a backward recursion.

4) The recursions for
−→
Wn and

←−
Wn do not depend on the

data y1, . . . , yN , as is usual in Kalman filtering and
recursive least squares algorithms. In consequence, these
recursions can be precomputed off-line.
For 1 � n � N , the matrices

−→
Wn and

←−
Wn will not

normally depend on n. (This applies, in particular, to
all examples in Section II.) In many applications, only
these steady-state solutions are of interest.

VI. COMPUTATION OF LOCAL STATE ESTIMATE
AND LOCAL LIKELIHOOD

The following quantities are easily derived from (53).
Estimation of σ2

n as in (18):

σ̂2
n =

1

νn

(
x̂TnWnx̂n − 2x̂Tnξn + κn

)
. (55)

Unconstrained state estimation:

x̂n = argmax
xn

p̆n(y1, . . . , yN ;xn) (56)

= W−1n ξn. (57)

In this case, (55) becomes

σ̂2
n =

1

νn

(
−ξTnW−1n ξn + κn

)
. (58)

Estimation of unknown amplitude, i.e., xn = βns for some
given column vector s:

β̂n = argmax
β∈R

p̆n(y1, . . . , yN ;βs) (59)

and

x̂n =
(sTξn)s

sTWns
(60)

In this case, (55) becomes

σ̂2
n =

1

νn

(
− (sTξn)2

sTWns
+ κn

)
. (61)

In all these cases, the local likelihood (21) is easily obtained
from σ̂2

n by (22).
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