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Abstract—We use ideas from sparse Bayesian learning for
estimating the (weakly) sparse input signal of a linear state
space model. Variational representations of the sparsifying prior
lead to algorithms that essentially amount to Gaussian message
passing. The approach is extended to the case where the state
space model is not known and must be estimated. Experimental
results with a real-world application substantiate the applicability
of the proposed method.

I. INTRODUCTION

The general area of this paper is sparse Bayesian learning,
which was introduced in the seminal paper [1] and has since
found applications in signal processing [2] and communica-
tions [3].

The specific problems addressed in this paper is the estima-
tion of a sparse input signal U = (U1, . . . , UL) ∈ RL of a
linear dynamical system; first, for a known dynamical system,
and then, for an unknown dynamical system.

The system model is defined as

Xk = AXk−1 + bUk−1 (1)
Yk = cXk +Nk (2)

where the observations Y = (Y1, . . . , YL) ∈ RL and the model
is governed by Nk

iid∼ N
(
0, σ2

N

)
, A ∈ Rd×d and Xk, b,

cT ∈ Rd.
How to use sparsity to regularize blind estimation problems

has been a research topic for many years. Related approaches
include, e.g., blind source separation [4], [5] and dictionary
learning [6]. The Bayesian approach to such problems provides
not only an estimate of the sparse variables, but also reliability
information of the posterior (e.g., posterior variance), which
can be essential for blind deconvolution [7].

A key issue with any Bayesian approach is the choice
of a suitable prior, which strongly influences the resulting
algorithms. As observed in [8]–[10], variational representations
of pdfs (probability density functions) offer interesting options
in this respect. Fortunately, such variational representations
include important classes of compressible priors1 [11]. Com-
pressible priors as in [11] are pdfs such that sorted samples

1Not to be confused with the information-theoretic notion of compressibil-
ity.

exhibit a power-law decay. We model our input signals as i.i.d.
processes with such priors, and such signals will be called
weakly sparse. The main contributions of this paper are as
follows:

1) We demonstrate the use of sparsifying (“compressible”)
priors with variational representations for input signals
of state space models such that the resulting estimation
algorithm amounts to Gaussian message passing (Sec-
tion III).

2) We derive and demonstrate an algorithm for blind
input estimation (Sections V and VI). Again, the actual
computations amount to Gaussian message passing.

3) We extend the Bryson-Frazier Kalman smoother [12]
to input estimation, thus obtaining a Gaussian message
passing scheme for the mentioned computations that
does not require a matrix inversion.

II. EXAMPLES

We begin with two examples, both in order to clarify the
problem statement and to illustrate the empirical success of the
proposed methods. Consider an input signal U ∈ {−1, 0, 1}L
with s non-zero components where s � L. Furthermore,
observations y, from the random variable Y, are generated
via a linear state space model as in (1) and (2).

Example 1 (Weakly-Sparse Input Estimation) Assume that
the dynamical system, (1) and (2), is completely known. In
the simulation, a (exactly) sparse signal U is passed through
a strongly resonating filter of order d = 12, resulting in the
measured signal y as depicted in Fig. 1 (top). Fig. 1 (bottom)
shows the estimate of the input signal obtained by Gaussian
message passing as in Sections III and IV. The corresponding
LASSO estimate [13], which is much harder to compute, is
also depicted for comparison. Observe that, for this example
the LASSO estimate does not work well due to the strong
coherence in the dictionary. �

Example 2 (Blind Deconvolution) Next consider an example
where A, b and c in (1) and (2) are not known; all we have is
the output signal y in Fig. 2 (top). Fig. 2 (bottom) shows the
estimated input signal obtained by Gaussian message passing
as in Section V. The assumed (and true) system order is d = 4.
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Fig. 1. Input estimation with state space model and sparsifying i.i.d. prior
using simulated data with SNR of 30 dB.

We have not been able to make the LASSO algorithm work
for this case. �

Both examples are simulated with a SNR = 30 dB, as well
as i.i.d. Student’s t prior over γ with ν = 10−4, and they
are evaluated after 5 EM iterations. Additional experimental
results with a real-world example will be given in Section VI.

III. SPARSITY WITH GAUSSIAN ALGORITHMS

A. Basic Idea

In order to obtain a sparse estimate of the input signal U , we
complete the state space model in (1) and (2) with a sparsifying
i.i.d. prior p(u); specifically, we will choose the Student’s t
distribution, defined as

p(u) =
Γ
(
ν+1
2

)
√
νπΓ

(
ν
2

) (1 +
u2

ν

)− ν+1
2

, (3)

with parameter ν > 0 and where Γ (·) refers to the gamma
function. The Student’s t distribution with ν < 3 belongs to
a class of distributions that are provably compressible [11].
Clearly, such a prior makes the overall statistical model non-
Gaussian.

Following the ideas of [1], [9], we will retrieve Gaussianity
by the following steps. First, we will use a variational repre-
sentation of p(u) (as in Section III-B), which introduces new
variables γ1, . . . , γL such that p(uk |γk) is Gaussian and

p(uk) = sup
γk

p(uk |γk)f(γk) (4)

for a function f(γk). A factor-graph representation of (4) is
shown in Fig. 3, where the node/factor p(uk) is expanded into
a max-box, cf. [14].
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Fig. 2. Blind input estimation example using 4-th order state space model
on simulated data with SNR of 30 dB.

In a second step, we approximate p(u,y) by the Gaussian
distribution

p̂(u,y) , p(y|u)

L∏
k=1

p(uk | γ̂k) (5)

where γ̂ = (γ̂1, . . . , γ̂L) result from the maximization dis-
cussed in Section III-C. We will see that this maximization
amounts essentially to (multiple rounds of) Gaussian message
passing.

Conceptually, we then estimate U by MAP estimation
from the Gaussian distribution (5). However, all the required
computations have already been performed in the last round
of Gaussian message passing in Step 2 above.

The approximation (5) exemplifies Type II methods as
in [15]. Sparsifying priors and related algorithms for such
methods have been presented in [9], [16].

B. Variational Prior Representation
A symmetric pdf p (x) is said to be strongly super-

Gaussian [10] if p(
√
x) is log-convex on (0,∞). Such pdfs

have heavy tails, which are key to compressibility [11].
Strongly super-Gaussian pdfs admit the following variational
representation [10]: for p (x) = e−g(x

2), we have

p(x) = sup
γ>0

p (x|γ)φ(γ−1), (6)

where

p (x|γ) = (2πγ)
− 1

2 exp

(
−1

2

x2

γ

)
(7)

is a Gaussian distribution and

φ(α) =

√
2π

α
eg
?(α/2) (8)
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Fig. 3. Factor-graph representation of (4): the box p(u) (left) is expanded
into a max-box (right).

where g? is the concave conjugate of g (see, e.g. [17]). In the
sequel we define f (γ) , φ(γ−1).

The Student’s t distribution (3) is strongly super-Gaussian,
and it has the variational representation (4) with

f(γk) = Kν γ
−ν/2
k e−ν/2γk (9)

where Kν , 2π
(

2ν
ν+1

)ν+1

eν+1.

C. Maximization by EM
The parameters γ̂ in (5) are defined by

γ̂ , arg maxγ1,...,γL

∫
p(y|u)

L∏
k=1

p(uk |γk)f(γk) duk, (10)

which may be viewed as maximizing the following lower
bound on the evidence p(y):

p(y) =

∫
p(y|u)p(u) du (11)

=

∫
p(y|u)

L∏
k=1

max
γk

p(uk |γk)f(γk) duk (12)

≥ max
γ1,...,γL

∫
p(y|u)

L∏
k=1

p(uk |γk) f(γk) duk. (13)

The maximization in (10) is naturally carried out by ex-
pectation maximization (EM) with hidden variables Uk. The
EM algorithm alternates between computing new posterior
probabilities by Gaussian message passing and re-estimating
γk individually by

arg maxγk Ep(uk |y,γ′)[log p (uk |γk)] + log f(γk). (14)

IV. EFFICIENT GAUSSIAN MESSAGE PASSING

The main ingredients to (14) are the posterior densities
of Uk. In linear state space models, these quantities can
be computed (with linear complexity) by Kalman filtering
techniques (e.g., a Rauch-Tung-Striebel smoother [12]) with
additional steps, or by Gaussian message passing as in [14].

A
X ′k−1

+

b

=
Xk

c

X ′k

×

Uk−1

N
(
0, σ2

)
f
γ

1
2
k−1

+

N
(
0, σ2

)
Nk

yk

max

p (Xk |X ′k−1, )

p (yk |Xk)

Fig. 4. A factor graph representation our weakly-sparse input state space
model, where p(y|u) is decomposed into factors defined by the sate space
model in (2).

We now propose an efficient Gaussian message passing
scheme to compute p (uk |y,γ) (for fixed y and γ) that
does not require any matrix inversion. The proposed scheme
turns out to be an extension of the Bryson-Frazier Kalman
smoother [12] to input signal estimation. Note that, for the
(infinite impulse response) models of this paper, this extension
is not trivial. The following description of the algorithm
generally follows [14], but focusses on the quantities

W̃Xk
=
(−→
VXk

+
←−
VXk

)−1
(15)

W̃Xk
µ̃Xk

= W̃Xk

(−→mXk
−←−mXk

)
, (16)

where
−→
VXk

and
←−
VXk

denote covariance matrices and −→mXk

and ←−mXk
mean vectors being passed in the corresponding

direction. The posterior distribution of Uk is then obtained
as

VUk = σ2γk − (σ2γk)2bTW̃Xk+1
b (17)

mUk = −σ2γkb
TW̃Xk+1

µ̃Xk+1
. (18)

The full message passing scheme to obtain (17) and (18) first
performs a forward recursion over all k, equivalent to Kalman
filtering, resulting in

−→
VXk

and −→mXk
. Then the quantities W̃Xk

and W̃Xk
µ̃Xk

are computed with the following two updates,
starting from k = L: include yk with

W̃Xk
= FT

kW̃X′kFk + gkc
Tc (19)

W̃Xk
µ̃Xk

= FT
kW̃X′k µ̃X′k − gkcT

(
yk − c−→mXk

)
(20)



where

gk =
(
c
−→
VXk

cT + σ2
)−1

(21)

Fk = I− gkcTc
−→
VXk

(22)

and then a time update

W̃X′k = ATW̃Xk+1
A (23)

W̃X′k µ̃X′k = ATW̃Xk+1
µ̃Xk+1

. (24)

Given the posterior density of Uk, the maximization problem
in (14) is performed independently and the update of varia-
tional parameter γk is retrieved as shown in [10] via

γk =

(
− 1

uk

d (log p (uk))

duk

)−1 ∣∣∣∣
uk=

√
Ep(uk |y,γ′)[u

2
k]

(25)

V. SYSTEM IDENTIFICATION

So far, we have assumed that the system model (1) and (2)
is known. We now turn to the case where the system model is
not known and must be estimated as well.

In order to derive a blind scheme, let us rewrite and
extend (12) as the joint minimization problem

arg minγ,H−2 log p(y|γ,H) (26)

where H denotes the linear operator mapping from U to the
noiseless observations. From standard matrix identities, and
invoking the same step as in (13), the minimization problem
in (26) can be expressed as

arg minu,γ,Hlog
∣∣HΘHT + σ2I

∣∣+ σ−2‖y −Hu‖2

+

L∑
k=0

u2k
γk

+ log f(γk). (27)

where Θ = diag (γ) and the columns of H are normalized,
i.e., the state space model’s impulse response h = h1, . . . , hL
is constrained to have energy 1 to overcome scaling ambiguity
in H and γ.

The objective function (27) may be computed conveniently
by coordinate descent in H and γ. When γ is fixed, we
recognize a state space model identification problem where
the state space is driven by non-stationary Gaussian noise.
Whereas in the other case, i.e. when H is kept fixed, the
objective is equivalent to sparse input estimation.

We propose an alternating algorithm estimates γ and H
accordingly. For the input estimation, i.e., when H is kept
fixed, we invoke the previously presented framework from
Sections III and IV. In addition, when γ is fixed, the EM
methods from [18] are used to estimate the state space model,
i.e., A, b and c, in (1) and (2).

To complete the EM steps from [18], the necessary posterior
probabilities overXk follow from forward-backward message-
passing algorithm as in Section IV with the additional steps

VXk =
−→
VXk

(
I− W̃k

−→
VXk

)
(28)

mXk = −→mXk −
−→
VXkW̃Xk

µ̃Xk
(29)

and the cross covariance of X ′k−1 and XT
k is computed from

VX′k−1,XT
k

=
−→
VX′k−1

AT
(
I− W̃Xk

)−→
VXk

. (30)

Similarly to the maximization over u (cf. Section IV), the
new messages W̃Xk

and W̃Xk
µ̃Xk

result in an inversion-free
algorithm, contrary to standard EM methods [18] and [19].

A. Initialization
The input estimate in the first iteration can be considered

proportional to the energy in y weighted by the spectrum of the
initial state space model. With no prior knowledge on model
or U , an instantaneous energy detector is a sensible initial
choice. To this end, the initial state space model is initialized
with

A = 0, (31)

b as all ones vector, and c is drawn randomly and scaled such
that cb = 1.

B. Energy-Constrained Updates
Since the EM algorithm increases the likelihood iteratively,

the unspecific input estimates, during the first iterations, imply
a large ambiguity on the state space model. Commonly, this
results in system estimates that exhibit a gain which is far
from 1.

To prevent this effect, the updates of the state space models
impulse response h = h1, . . . , hL are constrained such that
‖h‖2 = 1. The constrained impulse response follows as

‖h‖2 = c

( ∞∑
n=0

AnbbT
(
AT
)n)

cT (32)

= c C
(
A, bbT

)
cT, (33)

where we used hn = cAnb and C
(
A, bbT

)
denotes the

controllability Gramian [12], which can be obtained by solving
a Lyapunov equation. When A is (approximately) constant
during an EM update of the SSM, a quadratic constraint on c
can be conceived from (33) and added to the M-step of c:

min
c

cWcc
T − 2cWcmc

s.t. c C
(
A, bbT

)
cT = 1,

where Wc and Wcmc follows from the EM step in [18].

VI. A REAL-WORLD EXAMPLE

Ballistocardiography (BCG) tries to infer heartbeats from
body movement generated by the ejection of the blood at each
cardiac cycle [20]. The problem is challenging because the
corresponding system is often highly resonating, see Fig. 5.
Moreover, the system is unknown and likely to change over
time.

Some experimental results are shown in Fig. 5. The BCG
signal consists of 3000 samples sampled at 20 Hz. The
assumed model order for the system identification is d = 4.
We model the input signal as a weakly sparse random signal,
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Fig. 5. Blind pulse (heart beat) detection from a ballistocardiographic (BCG)
signal. The ECG signal (middle) is used for validation (i.e., to provide the
ground truth). The bottom plot shows the estimated variance of each input
signal sample.

specifically we select an i.i.d. Student’s t prior with ν = 10−3.
Our choice is motivated by guarantees that realizations of
this prior are itself almost surely weakly sparse or com-
pressible [11], thus encouraging soundness of our Bayesian
inference scheme. Initialization according to Section V-A is
followed by 20 EM iterations.

Comparing the estimated variance vector Fig. 5 (bottom)
with an electrocardiographic (ECG) reference signal Fig. 5
(middle), we find that all heartbeats are detected, and there
are no false alarms except that some heartbeats are split
into closely adjacent beats. Such (physiologically impossible)
duplications can easily be cleaned up, as illustrated by the
circles in Fig. 5 (bottom).

VII. CONCLUSION

Variational representations of heavy-tailed priors in oth-
erwise linear Gaussian models enable estimation by means
of Gaussian message passing. This general idea was worked
out for estimating the (weakly) sparse input signal of a
linear state space model. The approach was then extended
to the case where the linear system is unknown and must
be estimated as well. The robustness and practicality of the
proposed approach was demonstrated by a real-world example.
Finally, we proposed a new (and very efficient) version of
Gaussian message passing in linear state space models for
input estimation without matrix inversion.
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