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8092 Zürich, Switzerland

molkaraie@isi.ee.ethz.ch, loeliger@isi.ee.ethz.ch

Abstract—The partition function of a factor graph can some-
times be accurately estimated by Monte Carlo methods. In this
paper, such methods are extended to factor graphs with negative
and complex factors.

I. INTRODUCTION

Let X1,X2, . . . ,XN be finite sets, let X be the Cartesian
product X != X1 × X2 × . . . × XN , and let f be a function
f : X → C. We are interested in numerically computing the
partition function

Zf
!=

∑

x∈X
f(x) (1)

for cases where N is large and f has some useful factorization.
If f has a cycle-free factor graph [1], the sum (1) can be

computed directly by sum-product message passing. In this
paper, however, we are interested in cases where no such
factor graph is available (e.g., when the factor graph of f
is a rectangular grid as in Fig. 7).

In the important special case where f is real-valued and
nonnegative (i.e., f(x) ≥ 0 for all x ∈ X ), the probability
mass function

p(x) !=
f(x)
Zf

(2)

is the basis of a variety of Monte Carlo methods for esti-
mating (1), see [2], [3]. Such Monte Carlo algorithms have
successfully been used, e.g., for the computation of informa-
tion rates of source/channel models with 2-D memory [4],
[5]. Note that p inherits factorizations (and thus factor graphs)
from f .

In this paper, we extend these Monte Carlo methods to
the case where f is real-valued (but not nonnegative) or
complex. The motivation for this extension is twofold. First,
the Fourier transform of a function f preserves the topology
of the factor graph, but generally results in complex factors
[6], [7]. Second, factor graphs of probability mass functions
in quantum mechanics naturally involve complex functions
[8]. In both cases, computing quantities of the form (1) is
of supreme interest.

In full generality, the computation of (1) is, of course,
intractable (already in the nonnegative real case), but good
Monte Carlo algorithms may nonetheless work well for many
cases of interest (as in the nonnegative real case).

The paper is structured as follows. After introducing some
notations in Section II, the proposed algorithms are described
in Sections III and IV. The description focuses on the real
case; the generalization to the complex case is outlined in
Section V. The proposed methods are illustrated by some
numerical experiments in Section VI.

II. PROBABILITIES AND PARTIAL PARTION FUNCTIONS

We begin the proposed generalization by defining

Z|f |
!=

∑

x∈X
|f(x)| (3)

and the probability mass function

p|f |(x) !=
|f(x)|
Z|f |

(4)

which will replace (2) in the Monte Carlo algorithms. Note
that p|f | also inherits factorizations (and thus factor graphs)
from f .

In the following, we restrict ourselves to the case where f
is real (but not nonnegative); the generalization to the complex
case is indicated in Section V.

Let

X+ != {x ∈ X : f(x) > 0} (5)
X− != {x ∈ X : f(x) < 0} (6)
X 0 != {x ∈ X : f(x) = 0} (7)

and thus
|X | = |X+| + |X−| + |X 0|. (8)

We then define the partial partition functions

Z+
f
!=

∑

x∈X+

f(x) (9)

Z−f
!=

∑

x∈X−
f(x) (10)

and thus

Zf = Z+
f + Z−f (11)

Z|f | = Z+
f − Z−f . (12)
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Finally, we define probability mass functions on X+ and
X− as follows:

p+
f : X+ → R : x &→ p+

f (x) !=
f(x)
Z+

f

(13)

and
p−f : X− → R : x &→ p−f (x) !=

f(x)
Z−f

(14)

A simple, but key, insight is that sampling from p+
f or from

p−f can be reduced to sampling from p|f |: since p|f | coincides
with p+

f on X+ (up to a scale factor), and with p−f on X−

(up to a scale factor), samples x(1), x(2), . . . from p|f | can be
partitioned into samples from p+

f and from p−f according to
the sign of f(x(!)). For example, samples from p|f |, and thus
both from p+

f and from p−f , may be drawn using tree-based
Gibbs sampling as in [4], [5], [9].

In this paper, we will now focus on the computa-
tion/estimation of the partial partition functions Z+

f and Z−f
separately. If these estimates are sufficiently accurate, Zf can
then be computed from (11). This approach is bound to fail,
of course, if both Z+

f and |Z−f | are large and their difference
is small. However, this cancellation problem (which is well-
known in quantum mechanics [10]) is beyond the scope of the
present paper.

III. ESTIMATING Z+
f AND Z−f

We will now propose two different Monte Carlo methods to
estimate the partial partition functions Z+

f and Z−f . The first
method uses uniform sampling and the second method uses
samples from p+

f (x) and p−f (x). Both methods need the value
of |X+| and |X−|, the computation of which is addressed in
Section IV.

A. Uniform Sampling
1) Draw samples x(1), x(2), . . . , x(k), . . . , x(K) uniformly

from X+, and samples x(1), x(2), . . . , x(!), . . . , x(L) uni-
formly from X−.

2) Compute

Ẑ+ =
|X+|
K

K∑

k=1

f(x(k)) (15)

Ẑ− =
|X−|

L

L∑

!=1

f(x(!)) (16)

!

It is easily verified that E[Ẑ+] = Z+
f and E[Ẑ−] = Z−f .

One way to draw samples uniformly from X+ and/or X−

is by drawing samples x(1), x(2), . . . , uniformly from X and
partitioning them according to the sign of f(x(!)).

B. Ogata-Tanemura Method [11], [12]
1) Draw samples x(1), x(2), . . . , x(k), . . . , x(K) from

X+ according to p+
f (x), as in (13), and samples

x(1), x(2), . . . , x(!), . . . , x(L) from X− according to
p−f (x), as in (14).

2) Compute

Γ̂+ =
1

K|X+|

K∑

k=1

1
f(x(k))

(17)

Γ̂− =
1

L|X−|

L∑

!=1

1
f(x(!))

(18)

!

It is easy to prove (see Appendix A) that E[Γ̂+] = 1
Z+

f

and

E[Γ̂−] = 1
Z−f

.

IV. ESTIMATING |X+|, |X−|, AND |X 0|
Again, we propose two different methods, one for uniform

sampling and another for sampling from p|f |. In each case,
the same samples as in Section III can be used.

A. Uniform Sampling
1) Draw samples x(1), x(2), . . . , x(k), . . . , x(K) uniformly

from X .
2) Compute

ξ+ =
|X |
K

K∑

k=1

[f(xk) > 0] (19)

ξ− =
|X |
K

K∑

k=1

[f(xk) < 0] (20)

ξ0 =
|X |
K

K∑

k=1

[f(xk) = 0] (21)

!

In these equations, [·] denotes the Iverson bracket [13, p.
24], which evaluates to one if the condition in the bracket
is satisfied and to zero otherwise. It is easy to prove that
E[ξ+] = |X+|, E[ξ−] = |X−|, and E[ξ0] = |X 0|.

B. Sampling from p|f |

We assume |X 0| = 0.
1) Draw samples x(1), x(2), . . . , x(k), . . . , x(K) from X ac-

cording to p|f |, as in (4).
2) Compute

Λ̂ =
1
K

K∑

k=1

1
f(x(k))

(22)

Γ̂ =
1
K

K∑

k=1

1
|f(x(k))|

(23)

!

It is not hard to prove (see Appendix B) that E[Λ̂] =
|X+|−|X−|

Z|f|
and E[Γ̂] = |X |

Z|f|
.

Using (8), we can then obtain estimates of |X+| and |X−|
from

|X+| + |X−| = |X | (24)

|X+| − |X−| ≈ Λ̂
Γ̂
|X | (25)
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Fig. 1. Estimated 1
N log2(Z+

f ) vs. the number of samples, for K = 105,
N = 6×6, and with factors as in (27). The plot shows 10 sample paths each
computed with estimator (15).

V. EXTENSION TO THE COMPLEX CASE

In (5)–(10), we partitioned X and Zf according to the sign
of f(x). In the complex case, we allow more such bins, one
for each possible argument (phase) of f(x), as illustrated by
the example in Section VI-B. The algorithms of Sections III
and IV are easily generalized to this setting.

However, the computation of probabilities in factor graphs
for quantum probabilities as in [8], can actually be reduced
to the real case as in Sections II and III (as will be detailed
elsewhere).

VI. NUMERICAL EXPERIMENTS

In our numerical experiments, we consider two-dimensional
factor graphs of size N = m × m, with binary variables
x1, x2, . . . , xN , i.e., X1 = X2 = . . . = XN = {0, 1}.

We suppose f : {0, 1}N → C, and f factors into

f(x1, . . . , xN ) =
∏

k, ! adjacent

κ(xk, x!) (26)

where the product runs over all adjacent pairs (k, #).
The corresponding Forney factor graph with factors as

in (26) is shown in Fig. 7, where the boxes labeled “=” are
equality constraints [1].

A. Two-Dimensional Model with Negative Factors
Let us consider a factor graph with factors as

κ(xk, x!) =






1.3, if xk = x! = 0
1, if xk = x! = 1
−1, otherwise

(27)

For this particular case, we prove in Appendix C that |X+|
and |X−| are analytically available as

|X+| = |X−| = 2N−1 (28)

We estimate Z+
f using uniform sampling with estimator (15)

of Section III-A, and the Oagata-Tanemura method with
estimator (17) of Section III-B.
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Fig. 2. Same conditions as in Fig. 1, but with K = 107 and N = 14× 14.
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Fig. 3. Estimated 1
N log2(Z+

f ) vs. the number of samples, for K = 107,
N = 14 × 14, and with factors as in (27). The plot shows 10 sample paths
each computed with estimator (17).

Some experimental results are shown in Figs. 1 through 3.
All figures refer to f with factors as in (27), and show the
quantity 1

N log2(Z
+
f ) vs. the number of samples K.

Figs. 1 and 2 show simulation results using uniform sam-
pling and Fig. 3 using the Ogata-Tanemura method.

For N = 6×6, the estimated 1
N log2(Z

+
f ) is about 1.18, and

for N = 14×14, it is about 1.23. As discussed in Section III,
1
N log2(|Z−f |) can be computed analogously.

B. Two-Dimensional Model with Complex Factors

We extend our numerical experiments to factor graphs with
complex factors as

κ(xk, x!) =






1.5, if xk = x! = 0
i, if xk = x! = 1
1, otherwise

(29)

where i is the unit imaginary number.
We define

X (+i) != {x ∈ X : f(x) ∈ iR>0} (30)
X (−i) != {x ∈ X : f(x) ∈ −iR>0} (31)
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Fig. 4. Estimated log2(|X+|) vs. the number of samples, for K = 105,
N = 15 × 15, and with factors as in (29). The plot shows 10 sample paths
each computed with estimator (19).

where R>0
!= {x ∈ R : x > 0}.

To estimate |X+|, |X−|, |X (i)|, and |X (−i)|, we can apply
uniform sampling of Section IV-A by first drawing samples
x(1), x(2), . . . uniformly from X , and then using the samples
in the relevant estimators according to the value of f(x(k)),
e.g., in (19) if f(x(k)) is a real positive number.

For a factor graph of size N = 15 × 15, Fig. 4 shows the
estimated log2(|X+|) vs. the number of samples K. We obtain
log2(|X+|) ≈ 223.

We again apply uniform sampling to estimate Z+
f , see

Section III-A. Some experimental results are shown in Figs. 5
and 6. All figures refer to f with factors as in (29), and show
the quantity 1

N log2(Z
+
f ) vs. the number of samples K.

In Fig. 5, we have N = 6×6 and the estimated 1
N log2(Z

+
f )

is about 1.26. In Fig. 6, the estimated 1
N log2(Z

+
f ) is about

1.38 for a factor graph of size N = 15× 15.

VII. CONCLUSION

We have shown that Monte Carlo methods as in [5] can
be extended to estimate the partition function of factor graphs
with negative and complex factors. However, the cancellation
problem of partial partition functions as in (11) has not been
addressed.

APPENDIX A
Suppose samples x(1), x(2), . . . , x(K) are drawn from X+

according to p+
f (x), as in (13). We have

E[Γ̂+] =
1

K|X+|

K∑

k=1

E
[ 1
f(X(k))

]
(32)

=
1

K|X+|

K∑

k=1

∑

x∈X+

p+
f (x)
f(x)

(33)

=
1

K|X+|

K∑

k=1

|X+|
Z+

f

(34)

=
1

Z+
f

(35)
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Fig. 5. Estimated 1
N log2(Z+

f ) vs. the number of samples, for K = 106,
N = 6×6, and with factors as in (29). The plot shows 10 sample paths each
computed with estimator (15).
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Fig. 6. Estimated 1
N log2(Z+

f ) vs. the number of samples, for K = 108,
N = 15 × 15, and with factors as in (29). The plot shows 10 sample paths
each computed with estimator (17).

!

The proof of E[Γ̂−] = 1
Z−f

follows along the same lines.

APPENDIX B
Suppose samples x(1), x(2), . . . , x(K) are drawn from X

according to p|f |, as in (4). We have

E[Λ̂] =
1
K

K∑

k=1

E
[ 1
f(X(k))

]
(36)

=
1
K

K∑

k=1

∑

x∈X

p|f |(x)
f(x)

(37)

=
1

Z|f |

∑

x∈X

|f(x)|
f(x)

(38)

=
|X+| − |X−|

Z|f |
(39)

!

The proof of E[Γ̂] = |X |
Z|f|

follows along the same lines.



APPENDIX C

We consider a two-dimensional factor graph of size
N = m×m, where m is finite and m > 2, with factors

κ(xk, x!) =
{

a, if xk = x!

−a, otherwise (40)

where a ∈ R and a (= 0.
We use the normal factor graph duality theorem [6] to show

that for this choice of factors, Zf , as defined in (1), is zero.
Consider the dual of the Forney factor graph with factors as

in (40). In the dual graph, the equality constraints are replaced
by XOR factors, and each factor (40) by its two-dimensional
Fourier transform which has the following form

ν(ωk, ω!) =
{

4a, if ωk = ω! = 1
0, otherwise (41)

The corresponding Forney factor graph of the dual graph is
shown in Fig. 8, where the unlabeled boxes represent factors
as in (41).

Let us denote the partition function of the dual graph by Zd.
Note that, each factor ν(ωk, ω!) is non-zero if ωk = ω! = 1.
Therefore, only the all-ones pattern might have a non-zero
contribution to Zd. But this pattern does not satisfy the XOR
factors of degree three in the dual graph, therefore Zd = 0.
Using the normal factor graph duality theorem [6, Theorem 2],
[7], we conclude that Zf = 0. Therefore, using (11) and (12),
we obtain

Z+
f = −Z−f =

Z|f |

2
(42)

Putting a = 1 (or a = −1), we have

Z+
f = −Z−f = 2N−1 (43)

and hence the following

Z+
f = |X+| (44)

−Z−f = |X−| (45)

Thus
|X+| = |X−| = 2N−1. (46)

Note that for m = 2, we have |X+| = |X |, Z+
f = Zf , and

Z−f = 0. Finally, note that, we can still show Zf = 0 if a ∈ C.
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