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Abstract—The problem of computing the information rate of
noisy two-dimensional constrained source / channel models has
been an unsolved problem. In this paper, we propose two Monte
Carlo methods for this problem. The first method, which is
exact in expectation, combines tree-based Gibbs sampling with
importance sampling. The second method uses generalized belief
propagation and is shown to yield a good approximation of the
information rate.

I. INTRODUCTION

Simulation-based techniques as in [1] and [2] can be used to

compute the information rate of noisy one-dimensional (1-D)

constrained source / channel models. For two-dimensional

(2-D) noisy constrained source / channel models, however,

computing the information rate has remained an unsolved

problem.

In a previous paper [3], we used tree-based Gibbs sampling

to compute the noiseless capacity of 2-D constrained channels.

In this paper, we extend this approach (using ideas from

[4] that were not used in [3]) to compute the information

rate of noisy constrained 2-D source / channel models. In

addition, we propose also a second Monte Carlo method

which uses generalized belief propagation (GBP) to compute

an approximation of the information rate. The second method

works also at high SNR where the first method suffers from

slow convergence.

II. PROBLEM SET-UP

We consider the problem of computing the information rate

of noisy 2-D constrained source / channel models. For a 2-D

grid of size N = M × M , let X = {X1, X2, . . . , XN} be

the input and Y = {Y1, Y2, . . . , YN} be the output of the

channel. Let xi denote a realization of Xi and let x denote

{x1, x2, . . . , xN}. We assume that each input Xi takes values

in a finite set X .

In constrained channels, not all sequences of symbols from

the channel input alphabet may be transmitted. Let SX ⊂ XN

be the set of admissible input sequences. We define the

indicator function

f(x) �=
{

1, x ∈ SX

0, x /∈ SX.
(1)

A basic assumption in this paper is that f(x) can be factored

into “local” constraints. For example, let f(x) be the product

= = = =

= = = =

= = = =

= = = =

Fig. 1. Forney-style factor graph of the indicator function of a (1,∞)
constraint. The unlabeled boxes represent factors as in (2).

of kernels of the form

fa(xk, x�) =
{

0, if xk = x� = 1
1, else,

(2)

with one such kernel for each adjacent pair (xk, x�). This

example is known as the 2-D (1,∞) constrained channel

and will be used for all numerical results of this paper. The

corresponding Forney-style factor graph of f is shown in

Fig. 1, where the boxes labeled “=” are equality constraints

[5]. (Fig. 1 may also be viewed as a factor graph as in [6]

where the boxes labeled “=” are the variable nodes.)
We define

Z
�=

∑
x∈XN

f(x) (3)

= |SX|, (4)

which is also known as the partition function in statistical

physics.
The mutual information rate is

1
N

I(X,Y) =
1
N

(
H(Y) − H(Y|X)

)
. (5)

For simplicity, we suppose that H(Y|X) is analytically avail-

able and p(y|x) factors as

p(y|x) =
N∏

i=1

p(yi|xi). (6)
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Fig. 2. Extension of Fig. 1 to a factor graph of p(x,y) with p(x) uniform
over the admissible configurations SX and with p(y|x) as in (6).

The corresponding extension of Fig. 1 is shown in Fig. 2.

In this case, the problem of estimating the mutual infor-

mation rate reduces to estimating the entropy of the channel

output, which is

H(Y) = −E
[
log(p(Y))

]
. (7)

As in [1], we can approximate the expectation in (7) by the

empirical average as

H(Y) ≈ − 1
L

L∑
�=1

log(p(y(�))), (8)

where samples y(1),y(2), . . . ,y(L) are drawn according to

p(y).
The following difficulties remain:

1) Drawing input samples x(1),x(2), . . . ,x(L) from

SX according to p(x) and therefrom creating

y(1),y(2), . . . ,y(L) according to (6).

2) Computing p(y(�)) for each � ∈ {1, 2, . . . , L}.

We will compute p(y(�)) based on

p(y(�)) =
∑
x

p(y(�)|x)p(x) (9)

= E
[
p(y(�)|X)

]
(10)

where p(x) is a probability mass function on SX. (More about

this below.)

If f(x) defined in (1) has a cycle-free factor graph repre-

sentation with not too many states, then generating samples

from p(x) can be done efficiently, cf. Appendix A. Moreover,

Z defined in (3) can then also be computed efficiently by

sum-product message passing [1], [6].

In this paper, however, a different approach is needed.

We will propose two methods: an exact sampling method in

Section III and a GBP-based method in Section IV.

III. EXACT SAMPLING METHOD

A. Tree-Based Gibbs Sampling

Tree-based Gibbs sampling (as described in Appendix A)

can be applied to draw input samples x(1),x(2), . . . ,x(L) from

SX according to p(x). The input samples can then be used to

create output samples y(1),y(2), . . . ,y(L).

Tree-based Gibbs sampling can also be applied to compute

a Monte carlo estimate of 1/Z, see [3] and Appendix B.

Tree-based Gibbs sampling mixes much faster than naive

Gibbs sampling [3], [7].

B. Importance Sampling

Adapting an idea from [4], an estimate of p(y(�)) in (9) can

be obtained using importance sampling [8] as follows.

1) Draw samples x(1,�),x(2,�), . . . ,x(K,�) from SX accord-

ing to some auxiliary distribution q(�)(x) using tree-

based Gibbs sampling.

2) Compute

p̂(y(�)) =
1
K

K∑
k=1

p(x(k,�))
q(�)(x(k,�))

p(y(�)|x(k,�)). (11)

It is easily verified that E
[
p̂(y(�))

]
= p(y(�)). The special

case q(�)(x) = p(x) amounts to uniform sampling.

In the numerical experiments of Section V, we will use

q(�)(x) =
p(x)

Z
(�)
q

e−αdH(x,x(�)), (12)

where dH denotes the Hamming distance, α is a nonnegative

constant, and x(�) is the input that gave rise to the output

y(�). Note that q(�)(x) has essentially the same factor graph

as p(x), which implies that sampling from q(�)(x) can also be

done by tree-based Gibbs sampling.

The quantity Z
(�)
q can be computed with tree-based Gibbs

sampling using estimators in (21) and (23) with a factor graph

partitioning as in Fig. 7 as a by-product of tree-based sampling,

see Appendix B.

IV. GBP-BASED METHOD

A. Region Graph

GBP has been shown to provide good approximations for

2-D channels with memory [9]. We start by constructing a

region graph which provides the graphical framework for GBP.

GBP operates by sending messages between the regions while

performing exact computations inside each region.

To construct the region graph, a set of basic regions is

required. In our numerical experiments in Section V with a

factorization as in (2), we used basic regions of size 2× 2 as

shown in Fig. 3. By sliding the basic regions along the rows

and the columns of the channel, we used the cluster variation

method to construct a region graph with counting numbers

as illustrated in Fig. 4, see [10], [11] for details. The set of

variables involved in each region R is denoted by xR.

At each region R, the region beliefs bR(xR) were com-

puted after convergence. The region beliefs bR(xR) are GBP

approximations to the corresponding marginals of p(x).
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Fig. 3. The basic region to construct the region graph in Fig. 4.

B. Sampling and Estimation

Samples x(1),x(2), . . . ,x(L) are generated as follows. Each

sample x(�) is generated piecewise sequentially according to

the belief bR(xR) in each basic region. For example, in the

region graph of Fig. 4, after computing bR(x1, x2, x4, x5),
sample x1 is drawn according to bR(x1), sample x2 is drawn

according to bR(x2|x1), etc.

In the basic regions, the beliefs are directly proportional to

the factor nodes involved in each region, which guarantees

that the samples are drawn from SX. Since beliefs are good

approximations to the marginal probabilites, one expects that

the samples are drawn from a distribution close to p(x),
see [11].

An estimate of p(y�) can then be obtained as follows:

1) Draw samples x(1,�),x(2,�), . . . ,x(K,�) from SX accord-

ing to bR(xR) of the basic regions.

2) Compute the expectation in (10) by empirical average.

V. NUMERICAL EXPERIMENTS

In our numerical experiments, we consider a 12 × 12 grid

with input alphabet X = {−1, +1} and with a factorization

of f as in (2).

We assume an additive white Gaussian noise channel with

noise variance σ2. We thus have

H(Y|X) =
N

2
log(2πeσ2), (13)

and p(y|x) in (6) factors into a product of kernels

p(yi|xi) =
1√

2πσ2
exp

(
− 1

2σ2

(
yi − xi

)2
)

. (14)

We define

SNR
�= 10 log10

1
σ2

. (15)

Using the methods of Sections III and IV, we obtain the

information rates shown in Fig. 5. The horizontal dotted line

in Fig. 5 is the noiseless capacity of this channel [3].

The solid curve in Fig. 5 was obtained by the exact sampling

method of Section III. For the SNR values in the interval

fAfCfDfF

x1x2x4x5

+1

fBfDfEfG

x2x3x5x6

+1

fF fHfIfL
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Fig. 4. Region graph with counting numbers constructed from Fig. 3.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 12 8 4 0-4-8-10

bi
ts

/s
ym

bo
l

dB

Fig. 5. Estimated information rate (in bits per symbol) vs. SNR (in dB) for a
12× 12 channel with a (1,∞) constraint and additive white Gaussian noise.
Solid line: exact sampling method; dotted line: GBP-based method.

[−10,−4] dB, the parameter α in (12) was set to zero, which

means that importance sampling in (11) reduces to uniform

sampling. Higher values of α were used for higher SNR. The

convergence of the method is illustrated in Fig. 6. For SNR

values above 4 dB, this method suffers from slow convergence.

The dashed curve in Fig. 5 was obtained by the GBP-based

method of Section IV.

VI. CONCLUSION

We proposed both an exact sampling method and a GBP-

based method to compute a Monte Carlo estimate of the

information rate of noisy 2-D constrained source / channel

models. The exact method has a convergence problem at high

SNR. The GBP method yields only approximate results, but

the approximation appears to be good and it seems to converge

at every SNR.

The methods were demonstrated for a 2-D (1,∞) con-

strained channel with additive white Gaussian noise and with

a uniform distribution over the admissible channel input con-

figurations. However, the methods are applicable to any joint
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Fig. 6. Estimated information rate (in bits per symbol) vs. the number of
samples L for a noisy 12× 12 (1,∞) constraint at zero dB. The plot shows
15 independent sample paths, each with K = 107 and α = 0.5.

source / channel model (including, in particular, nonuniform

input) with a suitable factor graph.
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APPENDIX A

TREE-BASED GIBBS SAMPLING [3], [7]

Let (A, B) be a partition of the index set {1, 2, . . . , N} such

that,

• For fixed xA, the factor graph of f(x) = f(xA,xB) is a

tree.

• For fixed xB , the factor graph of f(x) = f(xA,xB) is

also a tree.

An example of such a partition is shown in Fig. 7.

Starting from some initial configuration x(0) = (x(0)
A ,x(0)

B ),
the samples x(k) = (x(k)

A ,x(k)
B ), k = 1, 2, . . ., are created as

follows.

First, x(k)
A is sampled according to

p(xA|xB = x(k−1)
B ) ∝ f(xA,x(k−1)

B ); (16)

then x(k)
B is sampled according to

p(xB |xA = x(k)
A ) ∝ f(x(k)

A ,xB). (17)

Both sampling steps can be implemented efficiently using

the assumed tree structure [3], [7]. Tree-based Gibbs sampling

mixes much faster than naive Gibbs sampling.

APPENDIX B

ESTIMATING 1/Z USING TREE-BASED GIBBS SAMPLING [3]

Tree-based Gibbs sampling can be used to estimate 1/Z
(and Z itself) using the following algorithm.

Let

fA(xA) �=
∑
xB

f(xA,xB), (18)

= = = =

= = = =

= = = =

= = = =

�

�

�

�

�

�

�

�
Fig. 7. Partition of Fig. 1 into two cycle-free parts (one part inside the two
ovals, the other part outside the ovals).

and

fB(xB) �=
∑
xA

f(xA,xB). (19)

Note that∑
xA

fA(xA) =
∑
xB

fB(xB) =
∑
x

f(x) = Z. (20)

With the above assumptions, an estimate ΓA of 1/Z is formed

as follows.

1) Draw samples x(1)
A , x(2)

A , . . . , x(K)
A from SXA

according

to p(xA) �=
∑

xB
p(xA,xB) = fA(xA)/Z.

2) Compute

ΓA
�=

1
K|SXA

|
K∑

k=1

1

fA(x(k)
A )

, (21)

where

SXA

�= {xA : fA(xA) > 0}. (22)

By symmetry, we also have an analogous estimate ΓB

ΓB
�=

1
K|SXB

|
K∑

k=1

1

fB(x(k)
B )

(23)

The computation of

fA(x(k)
A ) =

∑
xB

f(x(k)
A ,xB), (24)

which is required in (21), is easy since the corresponding

factor graph is a tree.

The quantity SXA
in (22) may be easy to determine, in

particular, in our numerical experiments in Section V

SXA
= {xA : f(xA,−1) > 0}. (25)

In this case, |SXA
| =

∑
xA

f(xA,−1) is easily computed by

sum-product message passing in the (cycle-free) factor graph

of f(xA,−1).
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“Simulation-based computation of information rates for channels with
memory,” IEEE Trans. Inform. Theory, vol. 52, no. 8, pp. 3498–3508,
August 2006.

[2] H. D. Pfister, J.-B. Soriaga, and P. H. Siegel, “On the achievable infor-
mation rates of finite-state ISI channels,” in Proc. 2001 IEEE Globecom,
San Antonio, TX, Nov. 2001, pp. 2992–2996.

[3] H.-A. Loeliger and M. Molkaraie, “Estimating the partition function
of 2-D fields and the capacity of constrained noiseless 2-D channels
using tree-based Gibbs sampling,” Proc. 2009 IEEE Information Theory
Workshop, Taormina, Italy, October 11–16, pp. 228–232.

[4] H.-A. Loeliger and M. Molkaraie, “Simulation-based estimation of the
partition function and the information rate of two-dimensional models,”
Proc. 2008 IEEE Int. Symp. on Information Theory, Toronto, Canada,
July 6–11, 2008, pp. 1113–1117.

[5] H.-A. Loeliger, “An introduction to factor graphs,” IEEE Signal Proc.
Mag., Jan. 2004, pp. 28–41.

[6] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and the
sum-product algorithm,” IEEE Trans. Inform. Theory, vol. 47, pp. 498–
519, Feb. 2001.

[7] F. Hamze and N. de Freitas, “From fields to trees,” Proc. Conf. on
Uncertainty in Artificial Intelligence, Banff, July 2004.

[8] D. J. C. MacKay, “Introduction to Monte Carlo methods,” in Learning
in Graphical Models, M. I. Jordan, ed., Kluwer Academic Press, 1998,
pp. 175–204.

[9] O. Shental, N. Shental, S. Shamai (Shitz), I. Kanter, A. J. Weiss,
and Y. Weiss, “Discrete-input two-dimensional Gaussian channels with
memory: estimation and information rates via graphical models and
statistical mechanics,” IEEE Trans. Inform. Theory, vol. 54, pp. 1500–
1513, April 2008.

[10] G. Sabato, Simulation-Based Techniques to Study Two-Dimensional ISI
Channels and Constrained Systems. Master thesis, Dept. Inform. Techn.
& Electr. Eng, ETH Zurich, Switzerland, 2009.

[11] J. S. Yedidia, W. T. Freeman, and Y. Weiss. “Constructing free energy
approximations and generalized belief propagation algorithms,” IEEE
Trans. Inform. Theory, vol. 51, pp. 2282–2312, July 2005.

ISIT 2010, Austin, Texas, U.S.A., June 13 - 18, 2010

1682


