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Abstract—New decoding algorithms for linear codes are pro-
posed. The first part of the paper considers decoding general
binary linear codes by searching multiple trees, which is shown
to achieve near maximum-likelihood performance for short block
lengths.

The second part of the paper considers decoding low-density
parity check (ldpc) codes by means of repeated decoding attempts
by standard sum-product message passing. Each decoding at-
tempt starts from modified channel output, where some of the
bits are clamped to a fixed value. The values of the fixed bits are
obtained from multitree search.

I. INTRODUCTION

Tree search (sequential decoding) algorithms were tradition-
ally used to decode convolutional codes [1], [2]. A related
decoding method for short block codes was presented in [3].
In this paper, we propose, first, a new class of tree search
decoding algorithms for linear codes, and second, the use of
such algorithms to enhance message passing decoders of low
density parity check codes. The main features of the proposed
algorithms are the following:

• We use not only one tree, but several different trees,
which enables several independent decoding attempts.
The required structural information about the code may
either be precomputed or generated on the fly.

• Each tree is explored such that only the scores of nodes at
equal depth are compared. The maximum computational
complexity is controlled by a free parameter.

The resulting algorithms achieve near maximum likelihood
performance both for random linear codes and for low density
parity check codes of short length. Similar performance has
previously been reported in [4]–[6]. For a given performance,
it seems that the multitree decoding algorithms proposed
in this paper are somewhat faster (at the expense of more
memory) than those of [4]–[6], but a fair comparison is not
easy and outside of the scope of this paper.

In the second part of this paper, we focus on low-density
parity check (ldpc) codes. We use a version of multitree search
to provide multiple starting points for subsequent decoding
attempts by standard iterative sum-product message passing.

The general idea of repeated sum-product decoding attempts
using manipulated channel output was previously proposed in
[7]–[9]. In contrast to this earlier work, our approach works
also for longer ldpc codes.

In the simplest case, our multitree-aided ldpc decoding
reduces to flipping and fixing a single bit at a number of
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Figure 1. Code tree corresponding to (1).

different trial positions. Even this simple scheme significantly
reduces the error probability. Additional gains are obtained by
additional sum product decoding attempts from starting points
obtained by nontrivial multitree search.

Throughout this paper, we will consider only binary linear
codes and transmission over an additive white Gaussian noise
(AWGN) channel with binary antipodal signaling.

The paper is structured as follows. Section II presents a
basic tree search decoder which is used throughout this paper.
Section III describes how to apply this tree search decoder to
general linear codes using multiple trees. In Section IV we
present a special version of multitree decoding for ldpc codes.
A depth-limited version of the ldpc tree search decoder is
then used in Section V to provide starting points for repeated
decoding attempts by standard sum-product message passing.

II. A TREE SEARCH DECODER

A. The Code Tree

A code tree is a graphical representation of the codewords of
a code. To construct a code tree, we begin with a parity check
matrix in row echelon form. In such a matrix, the number of
leading zeros in row m + 1 exceeds the number of leading
zeros in row m. An example of such a parity check matrix is

H =

1 2 3 4 5⎛
⎝

1 0 1 0 1
0 1 0 1 0
0 0 0 1 1

⎞
⎠ . (1)

For every row hi of H = (hT
1 , . . . , hT

� )T , we define the
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incremental support set

SΔ(hi)
�= (support of hi) \

⋃
j>i

SΔ(hj). (2)

For H as in (1), the incremental support sets are
(SΔ(h3), SΔ(h2), SΔ(h1)) = ({4, 5}, {2}, {1, 3}).

From such a parity check matrix H , we form a code tree as
in Figure 1 as follows. Each section of the tree corresponds to a
row of H . The sections in the tree from left to right correspond
to the rows of H in the order (h�, h�−1, . . .). In each section,
the branches of the tree are labeled with values for the bits in
SΔ(h) of the corresponding row h. The number of branches
out of each node is 2|SΔ(h)|−1 for the corresponding row h.
Each node defines a partial codeword determined by the branch
labels on the path from the root node to the current node.
Terminal nodes define a codeword.

B. The Search Algorithm

A code tree is explored as follows. We maintain a list of
active nodes at each depth, which is initialized by the root
node at depth zero and no nodes at larger depth. We use some
score function which assigns a real value to each node. We
will use different score functions for different classes of codes
in the next sections. The higher the score of a node, the more
promising the node appears. The score of a node at maximum
depth is the log-likelihood of the codeword corresponding to
the node.

We update the list of active nodes in a series of sweeps. In
each sweep, we go sequentially through all depths d = 1, 2, . . .
and perform the following steps at each depth d:

1) Select the active node at depth d with the highest score.
2) Generate its successor nodes at depth d + 1 and insert

them into the list of active nodes.
3) Delete the expanded node from the list of active nodes.

Note that in Step 2, in the special case where a node has only
one (unique) extension to a codeword, then we generate this
codeword right away.

Each sweep generates at least one new codeword. The
search stops either when the score of a codeword exceeds a
predefined threshold or after a maximum number of sweeps.
Note that the list size at each depth can be limited to the
maximum number of remaining sweeps.

III. MULTITREE DECODING

OF GENERAL BINARY LINEAR CODES

In this section, we propose a new decoding algorithm for
general binary linear codes using multiple code trees that are
generated based on the received channel output. Each code
tree is searched using the algorithm of Section II.

A. Reliability-Based Generation of Multiple Code Trees

For a given linear code of length n and a received channel
output sequence (y1, . . . , yn) we form multiple code trees by
repeating the following steps. Let H0 be a (full rank) parity
check matrix of the code.

1) Create a random permutation (s1, s2, . . . , sn) of the
index sequence (1, 2, . . . , n) by a procedure, to be
described below, that favours high-reliability bits at the
end.

2) Permute the columns of H0 into the sequence
(s1, s2, . . . , sn). Call the result H ′.

3) Bring H ′ into row echelon form by row operations. Call
the result H .

The resulting matrix H defines a code tree as in Section II-A
that favors high-reliability bits near the root of the tree.

For Step 1, we first assign to each index � ∈ {1, 2, . . . , n}
the probability

p(�) = γe|α log p(y�|x�=0)/p(y�|x�=1)| (3)

where x� denotes the channel input at time �, where α ∈ R is a
free parameter (with α = 1 by default), and where γ ∈ R is the
scale factor required for

∑n
�=1 p(�) = 1. With these probabili-

ties, we sequentially draw sn, sn−1, . . . , s1 from {1, 2, . . . , n}
without replacement.

In the resulting code trees, nodes close to the root can have a
large number of successor nodes; for a random (binary linear)
code of dimension k, the size of the incremental support sets
(from the bottom up) tends to be close to the sequence k/2,
k/4, k/8. . . .

B. Score Function

Given a received channel output sequence y1, . . . , yn, the
score of a node is the log-likelihood of the corresponding
partial codeword, i.e.,

∑
� log p(y�|x�), where x� are the bits

in the partial codeword.

C. Multitree Search

We try multiple independent decoding attempts, each with
a different code tree, and stop if a codeword is accepted or
if the maximum number of decoding attempts is reached.
A codeword is accepted if its log-likelihood exceeds some
acceptance threshold. The threshold is determined experimen-
tally such that the simulated error rates are not significantly
affected. Such an acceptance threshold greatly reduces the
average decoding complexity. The worst-case complexity is
limited by the maximum number of sweeps per tree and the
maximum number of trees.

D. Simulation Results

We use an AWGN channel with {−1, +1}-signaling. The
signal-to-noise ratio is 10 log10(1/σ2), where σ2 is the vari-
ance of the noise.

Simulation results for the proposed decoding algorithm are
shown in Figures 2 and 3. In both figures, codes of rate 1/2
and length n = 100 are used. Also shown in the figures is a
lower bound on the word error rate of the maximum-likelihood
(ML) decoder. This lower bound is obtained as follows. When-
ever the multitree search decoder finds a codeword whose
log-likelihood exceeds the log-likelihood of the transmitted
codeword, a word error is counted for the ML decoder.
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Figure 2. Simulated word error rates for multitree decoding of a random
rate-1/2 code of length n = 100. From top to bottom: (i) max 200 sweeps in
a single tree; (ii) max 1000 sweeps in a single tree; (iii) max 100 sweeps in
each of 10 different trees; (iv) max 200 sweeps in each of 10 different trees;
(v) ML lower bound.
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Figure 3. Simulated word error rates for multitree decoding (solid lines) and
corresponding ML lower bounds (dashed lines) for three different rate-1/2
codes of length n = 100. Top: (3,6) ldpc code. Middle: (5,10) ldpc code.
Bottom: random code (same as in Fig. 2). All codes are decoded by max 200
sweeps in each of 10 different trees.

IV. MULTITREE DECODING OF LDPC CODES

In this section, we describe a version of multitree decoding
as in Section III that is tailored to ldpc codes. We construct
code trees such that nodes close to the root have a much
smaller number of successors than the code trees in Section III.
In addition, we will use precomputed code trees and a more
elaborate score function.

A. Code Tree from a Low-Density Parity Check Matrix

Assume that we are given a (full rank) low-density parity
check matrix H0 with n columns and n − k rows. We will
describe a procedure to obtain an equivalent parity check

matrix H in row echelon form that preserves some of the
sparseness of H0. Due to the sparseness of H , the code tree
has much fewer branches out of nodes near the root than the
code trees of Section III-A. The matrix H is then used to form
a code tree as in Section II-A.

A greedy probabilistic method to transform H0 into H
works as follows:

1) Bring the last m rows into row echelon form by row
and column permutations as explained below.

2) Bring the first n − k − m rows into row echelon form
by row operations.

Note that the last m rows retain the sparseness of H0. An
example for m = n − k − 2 is

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 . . .
0 1 . . .
0 0 0 1 1 0 1 0 0 . . . 0
0 0 0 0 0 1 1 1 0 . . . 0
...

...
0 . . . 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (4)

This method can fail if m is chosen too large. In that case,
we decrease m by one and try again. For a regular (3, 6) ldpc
code, a good choice for (the initial value of) m is 3/5 of the
number of rows.

The details of Step 1 are as follows. We build the last m
rows of H row by row starting with the bottom row. The i-th
row is constructed as follows:

1.1) Swap the row hi with some row from h1, . . . , hi,
such that after the permutation the incremental support
SΔ(hi) (2) is minimal and hi intersects with at least one
of the rows hi+1, . . . hn−k.

1.2) Permute the columns of hi in SΔ(hi) such that the
nonzero entries appear immediately to the left of the
leftmost nonzero entry in the row below (i.e., hi+1).

For an example (with m = n − k), consider

H0 =

1 2 3 4 5⎛
⎝

1 0 1 0 0
1 1 0 1 0
0 1 1 0 1

⎞
⎠

1
2
3

(5)

In step 1.1) we choose row 1 for the last row. After step 1.2)
we obtain

H1 =

2 4 5 1 3⎛
⎝

1 0 1 0 1
1 1 0 1 0
0 0 0 1 1

⎞
⎠ .

3
2
1

(6)

For the second row, we can choose either row 2 or 3 (as
indexed before the permutation). We arbitrarily choose row 2
and obtain the final result

H =

5 4 2 1 3⎛
⎝

1 0 1 0 1
0 1 1 1 0
0 0 0 1 1

⎞
⎠ .

3
2
1

(7)
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B. Reliability-Based Selection of Precomputed Trees

We use precomputed code trees, which are obtained by
random choices among the eligible rows h in Step 1.1 in
Section IV-A. (We only use trees with |SΔ(hn−k−m)| ≤ 3,
in order to restrict the number of branches out of the corre-
sponding node in each tree.)

We precompute a large number of trees, so that, for a given
received channel output sequence y1, . . . , yn, we can find some
trees in which high reliability bits appear close to the root. In
particular, we choose for decoding a fixed number of trees
with high value of

∑
�∈I log p(y�|x̃�) where x̃� is the hard

decision for bit � and I indicates the first bits in the tree. The
size |I| is a free parameter.

C. Score Function

The score of a node with partial codeword xI = vI is

maxx∈C′:xI=vI
log p(y|x), (8)

where C ′ is a relaxation of the original code C and I ⊂
{1, . . . , n} denotes the bits in the partial codeword. The score
(8) is an upper bound on the log-likelihood of any codeword
c ∈ C which passes through this node.

We obtain C ′ by choosing a parity check matrix H ′ that
consists of a subset of the rows in H . We choose the rows h′

in H ′ to satisfy

• support(h′) ∩ I �= ∅
• (support(h′

i) \ I) ∩ (support(h′
j) \ I) = ∅ for i �= j.

• h′ is unsatisfied given xI = vI and the hard decisions of
the bits not in I .

• s(h′) \ I contains only high-reliability bits.

D. Simulation Results

We use the same multitree procedure as in Section III-C
with an acceptance threshold. Some simulation results with
this decoding algorithm are shown in Fig. 4. These results are
obtained with 500 precomputed trees, out of which we pick
at most 5 trees (by comparing first 40 bits in the tree) for
decoding.

V. MULTITREE-AIDED LDPC DECODING

We now use the multitree search algorithm to help a
standard sum-product message passing decoder when it fails
to find a codeword. We repeatedly select a subset of bits and
use a tree search to find the most likely decisions for these
bits (or a list thereof). We then replace the channel information
of the selected bits with the tree search output decisions and
restart the message passing decoder. We continue until the
decoder finds a codeword (which we verify with the parity
check equations) or a maximum number of trials is reached.

A. Single Bit Flip-Aided Decoding

In the simplest possible case we fix the value of only one bit.
The tree search is trivial for this problem and the task reduces
to identifying suitable bit positions. We are specifically looking
for a bit with high reliability, whose hard decision is likely to
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Figure 4. Simulated word error rate (solid lines) for different decoders
of a regular (3,6) ldpc code of length n = 100 (same as in Fig. 3) and
ML lower bound (dashed line). Top: standard sum-product message passing.
Middle: multitree decoding as in Section III. Bottom: multitree decoding as in
Section IV. Both multitree decoders use max 50 sweeps in 5 different trees.

be wrong. We then restart the message passing decoder with
the value of the chosen bit forced to the flipped hard decision.

We identify candidate bits as follows. For each unsatis-
fied parity check equation h, we compute the log-likelihood∑

� log p(y�|x′
�), where � goes over the support of this parity

check and x′ maximizes the log-likelihood such that h is
satisfied. We order the parity checks according to this log-
likelihood. Beginning with the parity check with highest log-
likelihood, we go through the list of checks and choose the two
least reliable bits in every check until the maximum number
of bits is reached.

B. Multitree-Aided Decoding

We use a depth-limited version of the multitree search
algorithm presented in Section IV. We fix a value m < n− k
and do the permutations as in Step 1) on the parity check
matrix. We then construct a tree up to depth m from this
matrix. We decode this depth-limited tree with the score
function presented in Section IV-C.

We generate multiple trees by using a different bottom
row as a starting point for the permutations of Step 1) in
Section IV-A. We don’t precompute any trees but use the
received sequence y1, . . . , yn to break ties in Step 1.1) when
choosing the next row for permutation. We base the tie-
breaking rule on the following observations:

• A satisfied parity check equation with high reliability bits
is likely to contain no error.

• An unsatisfied parity check equation with high reliability
bits is likely to contain exactly one error.

For the bottom m/2 rows, we choose h such that h is not
satisfied and the bits constrained by h have high reliability.
For the next m/2 rows we choose h which has high reliability
bits and is satisfied. With this row selection method we aim
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to choose a subset of bits which contains some high reliability
flips. The satisfied high reliability parity check rows are added
to help the tree search decoder find the correct decisions.

C. Simulation Results

Some simulation results for this decoding algorithm are
shown in Figures 5 and 6. Both codes are almost-regular (3,6)
codes (obtained via progressive edge growth) taken from [10].
For every received sequence, we try sum-product message
passing decoding, then single bit flip-aided message passing
decoding, and if this fails, too, multitree-aided decoding with
trees of maximum depth m = 10. We use 10 sweeps in each
tree search with no threshold and hand a list of 10 partial
codewords to the message passing decoder. In both figures, the
very simple bit flipping scheme performs surprisingly well.
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Figure 5. Simulated word error rates for a (3, 6) low-density parity check
code of length n = 504. Top: standard sum-product message passing (50
iterations). Middle: repeated sum-product decoding attempts starting from a
single forced bit flip in up to 100 trial positions. Bottom: max 10 × 100
additional sum-product decoding attempts starting from partial codewords
(involving 10 parity checks) obtained from multitree search using 100 different
trees.

VI. CONCLUSIONS

We have proposed new multitree decoding algorithms for
general binary linear block codes, which are shown to achieve
near-maximum-likelihood performance for short block length.
We have also proposed variations of this approach for ldpc
codes. In particular, multitree search can be used to provide
starting points for repeated decoding attempts by standard
sum-product message passing. This last approach appears to be
particularly attractive in its simplest form, where the multitree
search reduces to flipping and fixing a single bit at a number
of different trial positions. A more detailed study of multitree
search decoding can be found in [11].
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[6] Sheng Tong, D. Lin, A. Kavčić, Li Ping, and B. Bai, “On the performance
of short forward error-correcting codes,” IEEE Commun. Let., vol. 11,
no. 11, Nov. 2007.

[7] H. Pishro-Nik and F. Fekri, “Improved decoding algorithms for low-
density parity-check codes,” Proc. of the 3rd Int. Conf. on Turbo Codes
and Relat. Topics, Brest, France, Aug. 2003.

[8] N. Varnica, M. P. C.Fossorier, and A. Kavčić, “Augmented belief propaga-
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