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Abstract—In a typical receiver, symbol synchronization must
be established before symbol demodulation. This paper discusses
synchronization for an isolated symbol from a filter-bank type
multicarrier system. It is shown that accurate symbol timing
for a single multicarrier symbol can be obtained using forward-
only processing. The proposed receiver computes continuous-
time symbol likelihoods along with a timing metric and its
time derivative. The timing metric shows a sharp concentration
that is used to produce a trigger to sample the matched filter
outputs. The paper proposes baseband processing using message
passing algorithms derived from factor graphs. Suitable system
parameters for which near-optimum synchronization is obtained
are identified using computer simulations.

I. INTRODUCTION

In a typical receiver, symbol synchronization must be es-

tablished before symbol demodulation, which, in turn, must

precede decoding. Synchronization is particularly challenging

when isolated packets are transmitted at times unknown to

the receiver. The established approaches in this case can be

classified into two groups. In the first approach, the data is pre-

ceded by a preamble that enables the receiver to synchronize

before demodulation. In the second approach, the whole block

is first sampled asynchronously and digitally stored, and then

processed to figure out the symbol boundaries. Neither of these

approaches is entirely satisfactory: the first approach wastes

transmission energy for the preamble, whereas the second

approach requires much digital processing.

In this paper, we propose a new approach to this problem.

For a suitably defined multicarrier symbol format, we show

that symbol synchronization (for an isolated symbol that

arrives at an unknown time) can be obtained as a by-product

of matched filtering. The receiver in the proposed system has

the general structure shown in Fig. 1: a time-invariant “filter”

produces, first, a continuous-time likelihood vector L(t) and

simultaneously, a timing signal LT 0(t) and its derivative, from

which a trigger signal is generated to sample the likelihood

signal L(t) at an optimal moment. The “filter” may be either

a continuous-time analog circuit or a discrete-time digital

processing unit with a free-running clock; the notation that

we will use assumes the latter, but the proposed system is

perfectly suitable for implementation in the former mode.

Unlike OFDM, the proposed approach does not use a cyclic

prefix, and the symbol does not need to arrive within a fixed

time window. For other approaches to the synchronization of

multicarrier symbols see, e.g., [1] [2].
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Fig. 1. Demodulation (i.e., computation of symbol likelihoods L) and
synchronization as a byproduct of matched filtering.

The paper is structured as follows. The system setup is in-

troduced in Sec. II. Sec. III provides an overview of likelihood

filters [3] based on linear Gaussian state-space models, mes-

sage passing on Forney-style factor graphs, and puts together

various ideas – in particular, localized models for pulses using

glue factors – to define a framework for receiver processing.

Synchronization and detection with forward processing are

elaborated in Sec. IV and performance results are provided for

different combinations of system parameters in Sec. V. The

paper is concluded in Sec. VI. The description of the likelihood

computations in Sec. III will assume some familiarity with

Forney-style factor graphs as in [4].

II. SYSTEM SETUP

Fig. 2 shows the system set up. The transmitter modulates

an encoded block, (b1, . . . , bM ) ∈ {+1,−1}M , of M bits, on

to binary antipodal pulses. The transmit signal is,

φ[j] =
M
∑

m=1

αm Re{φCB [j] exp(iΩmj)},−J ≤ j ≤ 0, (1)

where αm,m = 1, . . . ,M are real and |αm| are known

amplitudes, bmαm > 0, φCB [j] is a complex baseband pulse,

and the elementary pulses are located in adjacent frequency

bands with Ωm = (m−1)Ω0. We assume orthogonality among

the elementary pulses. We consider baseband processing,

assuming perfect carrier recovery. The receiver sees a noisy

version of the delayed signal: yj = φ[j − ν0] + zj , where zj

are i.i.d, zero mean Gaussian random variables with variance

σ2 and ν0 is the delay unknown to the receiver. The received

signal is passed through a bank of filters whose outputs are

used to compute two statistics. At the outputs denoted as

A©, time-varying log-likelihood ratios for the symbols are

produced. From the outputs denoted as B©, the overall signal-

to-noise log-likelihood ratio is computed which is used to

detect the packet, and to provide a trigger to sample the symbol

likelihoods. It is well known that the accuracy of pulse position
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Fig. 2. Block diagram of multicarrier transceiver.
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Fig. 3. Factor graph of a constrained state space model.

estimation improves with the number of dimensions [5]. When

M is sufficiently large, the likelihood for the received signal

exhibits a sharp concentration around the ideal sampling time

ν0. This phenomenon is fundamental to the scheme and is

used to sample the bits on the fly as the signal arrives and

provide soft outputs (α̂1, . . . , α̂M ) to a decoder.

III. LIKELIHOOD COMPUTATION WITH FACTOR GRAPHS

We are interested in computing the likelihood for a state-

space model using the Forney style factor graph shown in

Fig. 3 with observations y = (y1, . . . , yn), and hidden state

sequence X = (X1, . . . , Xn). While the following discussion

applies to general state-space models, we restrict ourselves to

autonomous (i.e., without input) linear models and Gaussian

noise with scalar observations: Xk = AXk−1, Sk = CXk,

Yk = Sk + Zk, Zk ∼ N (0, σ2), where A,B, and C are

matrices of suitable dimensions (our notation closely follows

[4]). The graph imposes a constraint on the state vector at

time n using a glue factor [3] labeled g. For example, for

a pure sinusoid model, by choosing g(xn) ∝ δ(‖xn‖ − 1),
the factor graph effectively models a subclass of sinusoids

on the unit circle. By placing the glue factor always at the

current time instance, n, we obtain a time-varying hypothesis,

denoted as H(n, g). The graph represents the joint density

p(y,X|H(n, g)). Using sum-product message passing, the

likelihood of the observations under the hypothesis H(n, g)
can be obtained as,

p(y|H(n, g)) =

∫

x

p(y, x1, x2, . . . , xn|H(n))g(xn, θ) dx,

= p(y|H(n))

∫

xn

−→
fXn

(xn)g(xn, θ) dxn, (2)

where p(y|H(n)) is the likelihood of the unconstrained model

(g is absent),
−→
fXn

(xn) is the normalized forward message,
−→µXn

(xn), and g(xn, θ) is parametrized by θ. From (2) we

note that the forward message is a sufficient statistic for θ.
When matrix A is non-singular, the choice of the glue

factor g(xn, θ) = δ(xn − θ) completely determines the state

(·)
-
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(xk)

-
[−→µXk

(xk)]γ
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Fig. 4. State forgetting.

trajectory. In this case, we obtain the likelihood for the known

signal hypothesis. Message passing with this choice leads to

many useful properties that enable us to derive algorithms with

forward processing as highlighted below.

a) The known signal likelihood can be written as

p(y|H(n, g)) = p(y|H(n))
−→
fXn

(xn = θ). By choosing

different parameters θ1 and θ2, likelihoods for different
hypotheses, such as in a binary signaling scheme, can

be obtained simultaneously using the same model.

b) The noise only hypothesis can be obtained with θ = 0,
as this implies an all zero solution for the state sequence.

c) In some problems, the previous two results lead to like-

lihood ratio computations using only forward messages

because the unconstrained likelihood p(y|H(n)) cancels
out. For example, the likelihood ratio between signal and

noise hypotheses is
−→
fXn

(xn = θ)/
−→
fXn

(xn = 0), that

between two known signal hypotheses is
−→
fXn

(xn =

θ1)/
−→
fXn

(xn = θ2), and so on.

d) ML parameter estimation can now be restated using (2)

as θML = argmaxθ

−→
fXn

(θ).
e) For a linear Gaussian model, the known signal-to-noise

log-likelihood ratio is related to the inner product as (see

[6] for details),

LA0[n] =
1

2σ2

[

2
〈

y[·], φ̃[.− κ]
〉

− ‖φ̃‖2

]

, (3)

where φ̃ is the underlying known signal modeled by

some glue factor parameter θ. It is important to note that,

for glue factor at time n, the delay, κ, can be controlled

by a suitable choice of θ. As we are going to show,

this can be used to delay the computations to the end

of a signal (a time-limited pulse in our case) until all

energy has been received. We obtain this using forward

computations and do not require the signal to be causal.

The description so far assumed a finite observation window.

To obtain algorithms in a truly forward processing style, we

introduce some approximations.

A. Likelihood Filters from Localized Models

Gaussian message passing requires computation of the mean

vector, −→mXn
, and the covariance matrix,

−→
VXn

. By modifying

the message computations as shown in Fig. 4 for every edge

Xk, we introduce a “forgetting” with 0 < γ < 1. The

update rule for the covariance matrix in this case typically

has a steady state solution, V∞ = limn→∞

−→
VXn

. By using

V∞, and by taking the lower limit of summation to X−∞

in (2), the message updates for −→mXn
can be performed in

the form of a stable filter. This has the effect of localizing

the model to the immediate past with an exponential window,

and is controlled by γ. From the likelihood filter, the two key

parameters, −→mXn
and V∞ of the Gaussian message,

−→
fXn

(xn),



are readily available for extracting various likelihoods.

B. Modeling Pulses

We consider approximating a time-limited pulse as a sum of

L sinusoids: φ[j] ≃
L
∑

ℓ=1

αℓ cos(Ωℓj+ψℓ),−
J
2
≤ j ≤ J

2
. Many

pulses of practical interest, viz. a root-raised cosine Nyquist

pulse or a Gaussian pulse, are well approximated with L = 5.
This decomposition can be written using a separate state-space

model for each sinusoid: at time k, we have Xℓ,k = AℓXℓ,k−1,

Sk =
∑L

ℓ=1
CℓXℓ,k. This leads to a loopy factor graph (due

to the sum term). An approximation to message passing is to

avoid the message iterations around the sum term (the details

are omitted here). In other words, each model assumes the

observations yk = CℓXℓ,k + Zk (instead of yk = Sk + Zk)

by ignoring the contribution from the other models. This

approximation does not lead to substantial performance loss.

When the pulse decomposition is combined with localized

models, we obtain a bank of filters from which time-varying

likelihoods can be computed. For a single pulse, LLR for a

known signal-to-noise hypothesis can be written as,

LA0[n] =
L

∑

ℓ=1

[

−→mT
Xℓ,n

−→
Wℓθℓ −

1

2
θT

ℓ

−→
Wℓθℓ

]

, (4)

where
−→
Wℓ is inverse of the steady state covariance matrix for

the ℓ-th model.

For forward processing, the delay mentioned with respect to

equation (3) is controlled by choosing, e.g., Cℓ = [1, 0], θℓ =
[

αℓ cos(ΩℓJ
2

+ ψℓ), αℓ sin(ΩℓJ
2

+ ψℓ)
]T

. The resulting LLR is

depicted for two pulses in Fig. 5. The plots to the left show

a transmitted RRC pulse in baseband (top) and the LLR in

(4) delayed to the end of the pulse (bottom). The plots to the

right correspond to another RRC pulse shifted in frequency.

The optimum sampling time is at J
2
, where the models match

the transmitted signals in each case.

When the pulses are used in binary antipodal signaling as

in (1), the LLR, Lm[n], for each bit is,

Lm[n] =

L
∑

ℓ=1

2−→mT
Xm

ℓ,n

−→
Wm,ℓθm,ℓ, m = 1, . . . ,M, (5)

where the indices m = 1, . . . ,M and ℓ = 1, . . . , L refer to

the ℓ-th state-space model for the m-th transmit pulse, φm.

Parameters θm,ℓ correspond to the bit hypothesis bm = +1.
When the message passing approximation is combined with

localized models, the uncoded BER for binary antipodal

signaling (with perfect symbol timing) for a single RRC pulse

is about 0.2dB worse compared to the theoretical limit. For

the multicarrier system in (1), the uncoded BER suffers a

further loss of about 0.3 to 0.5dB. This is due to the loss of

orthogonality of the pulses arising out of the approximations.

IV. SYNCHRONIZATION AND DETECTION

The problem of receiving a single multicarrier symbol

described in Section I is two fold: to detect the presence

of the transmit signal, and to identify the unknown delay ν0
to sample the matched filter outputs in Fig. 2 using forward
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Fig. 5. Signal versus noise LLRs for RRC pulses.

processing. The problem of finding the best sampling time

when the data is unknown (non-data aided synchronization) is

equivalent to identifying the pulse position when the pulse

parameters are unknown. For convenience we assume that

the transmit pulse ends at time 0 and a noisy version is

received with an unknown delay ν0. The maximum likelihood

estimate of the pulse position, νML, can be obtained from the

log-likelihood ratio of the total transmit pulse versus noise

hypothesis, LT 0[ν], with νML = argmaxν LT 0[ν], and

LT 0[ν] =
M
∑

m=1

max
ρm

Lm0[ν, ρm], (6)

where ρm , (θm,1, . . . , θm,L) is the parameter vector for

the hypothesis bm = +1 and the maximization is over

{+ρm,−ρm}. The LLRs Lm0[ν, ρm] for individual pulses are
computed by adapting (4) to each model. Sampling the bit

LLRs at νML does not necessarily result in a well performing

system unless the ML estimate is very good. In the following,

we examine this from two angles. First, we examine how

νML depends on M and the total pulse energy, ET. Second,

we consider whether a reliable detection using a thresholding

algorithm (for forward processing) is feasible. Throughout this

section, we consider RRC pulses located in adjacent frequency

bands as in (1).

A. Dependency of νML on M and SNR

We examine how the ML timing estimation error, νǫ ,

νML−ν0, depends on M and the total SNR ET/N0. ET refers

to the energy of the transmitted pulse, φ; as M increases, the

energy per bit, Eb, of the individual pulses is proportionally

decreased to keep ET normalized to unity to enable a fair

comparison of the contribution due to M . Fig. 6 shows the

average squared timing error (ASE) when the pulse parameters

are fully known (i.e., the maxρm
in (6) is replaced with

known values of ρm). The plots (dot-dashed lines) show an

improvement in ASE when M is increased. Fig. 6 also shows

(solid lines) the ASE for the unknown parameter case, which is

our interest. The gain with M is not very pronounced at low

SNRs. However, for a given choice of Eb (M), increasing
M (Eb) leads to an increase of pulse energy ET, helping to

reduce the ASE within some required range. Secondly, the
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Fig. 6. Timing ASE versus SNR.

time-varying LLR, LT 0[ν] shows a sharp concentration around
ν0 for M > 64 as depicted in Fig. 7. These two properties

can be used to achieve timing synchronization.

B. Threshold Detection and Synchronization

We would like to exploit the concentration depicted in

Fig. 7 by sampling the bit-wise LLRs when LT 0[ν] crosses
a threshold Lthr. This is shown in Fig. 8. If the threshold is

low, shown as Lthr1 , an early detection occurs, resulting in the

packet being dropped eventually by the receiver. The threshold

can be raised, say, to Lthr2 to detect very close to νML, but this

would increase the probability of missed detection. A feasible

choice depends on the statistics of the LLR a little away from

the peak, at LT 0[νML− ǫ], and close to the peak, at LT 0[νML].
We introduce the term “false detection” in this context:

Definition. False Detection. False detection is defined as

detecting a noisy pulse at a time outside a specified limit,
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TABLE I
DESIGN TOLERANCES FOR ML DETECTION

M fmax = ∆νmax σ2
∆ν

(

Eb

N0

)

min
dB

Ωmax

2πTs
(θmax < 2 degree) max. allowed

64 3190 1.74155e-06 1.89563e-13 7.6

128 6390 8.69414e-07 4.72425e-14 5.3

256 12790 4.34367e-07 1.17921e-14 2.7

∆νmax. Detection at time ν̂ is classified as a false detection

if |ν̂ − ν0| > ∆νmax.

False detects dominate the system performance and the false

alarm condition (detecting a signal when none is present) is

less important in this system. Two types of events contribute to

false detects. Event E1 is caused by the ML timing estimation

error, |νML − ν0| > ∆νmax. This error can be reduced only

by increasing either M or Eb or both. Event E2 is the LLR

in the region away from the peak crossing the threshold as

shown in Fig. 8. Another error condition is missed detections

arising from LT 0[νML] falling below the threshold. A suitable

operating point meets a given set of criteria for the timing

error, and probabilities for false and missed detection.

C. Choice of System Parameters

The system parameters M , Eb, and the receiver threshold

Lthr can be obtained as outlined below. As timing error affects

sampling of the pulses placed higher up on the spectrum, we

allow up to a certain phase error, θmax, in the state space

model corresponding to the highest frequency, Ωmax:

|νML − ν0| ≤ ∆νmax, where ∆νmax = θmax/Ωmax, (7)

WhenM is large, the ML timing estimation error ∆ν = νML−
ν0 is nearly Gaussian. As an example, by choosing, ∆νmax >
4σ∆ν , the probability of false detection (due to the timing

error event E1 ) is upper bounded as, Pr{∆ν > ∆νmax} <
Pr{∆ν > 4σ∆ν} = 3.167× 10−5. ∆νmax depends on M via

Ωmax. Table I shows design parameters for θmax = 2 degrees,

and a minimum value of Eb/N0 that meets the criterion (7).

When M is large, LT 0[νML] also tends to be nearly Gaus-

sian. Given a probability of missed detection, pmd, we can

choose Lthr such that

Pr{LT 0[νML] < Lthr} < pmd. (8)

The above criterion is sufficient because, LT 0[νML] ≥
LT 0[ν],∀ν. A feasible operating point (M and Eb) is one

which meets (7) and (8). This implies in general a further

increase in ET via either M , or Eb, or both compared to the

operating points given in Table I.



V. RESULTS

We compare the performance of two detection algorithms

with the algorithm using ML position estimates. In the first

algorithm, a fixed offset is added to the detected threshold to

adjust for a bias:

Threshold Detection “THR”:

• Identify the time ν̂ at which the LLR crosses a threshold:

LT 0[ν̂] = Lthr.

• Add a fixed delay to ν̂: νd = ν̂+νoff. (νoff can be chosen

as the mean of νML − ν̂.)
• Sample all the bit LLRs at νd.

The second algorithm uses a first threshold on LT 0[ν] followed
by a second threshold on the time derivative of LT 0[ν] to

locate the peak. The time derivative, dLT 0

dt
, (or its discrete-time

equivalent) is easily computed from the state space model:

note that in equations (4) or (5), −→mXm
ℓ,n

is the only time-

dependent quantity and its derivative can be obtained from

the filter descriptions. A peak detection is feasible because

LT 0[ν] is nearly noise-free above the first threshold.

Threshold Plus Peak Detection “THRNPEAK”:

• Open a window (ν1, ν2) when LT 0 stays above the

threshold: LT 0[ν] ≥ Lthr, ν1 ≤ ν ≤ ν2.
• Identify a zero crossing of dLT 0

dt
in the window at νd.

• Sample all the bit LLRs at νd.

Table II shows the performance for different values of M
and Eb/N0. Simulations were performed on 10, 000 samples

for each set (except 1000 samples for M = 1024) The

table shows the percentage of false detects, ηfd, and the

percentage of missed detects, ηmd, for each case. For ηfd,
false detects from both events (E1 and E2 ) are accounted

for. The threshold and offset are manually fixed for each set

of system parameters. The algorithm “THR” shows a high

number of false detects, although ηmd reduces with either

M or Eb/N0. This method has a higher sensitivity to the

choice of the offset νoff because the width of the spike gets

narrower as M increases. Secondly, the threshold crossing

times have a jitter. These two factors make the detection time,

νd, fall outside the allowed range more often, leading to a

higher ηfd. These errors are noticeable at higher values of

Eb/N0 in Table II. Although improvements may be obtained

by an accurate estimation of νoff, the algorithm “THRNPEAK”

offers a better alternative. The algorithm “THRNPEAK” is less

sensitive to the choice of the first threshold and performs closer

to “ML” as M or Eb/N0 are increased. For each choice of

Eb/N0 there exists a value of M above which the detection

performance shows considerable improvement. Alternately, at

higher values ofM , even though the tolerance in (7) is tighter,

a given detection performance is achieved at lower value of

Eb/N0. The uncoded BER performance due to timing errors

incurs no significant loss in this scheme and stays within the

previously mentioned limits. Another observation (not shown

in the table) is, the false detects are mostly dominated by the

event E2 discussed before; otherwise νd is equal to the true

value ν0 with high probability.

TABLE II
SYNCHRONIZATION AND DETECTION PERFORMANCE

(a) Eb/N0 = 2dB
ML THR THRNPEAK

M ηfd ηfd ηmd ηfd ηmd

128 23.88 99.25 0.35 93.89 0.56
256 9.32 98.32 0.02 83.95 0.05
512 1.62 33.93 0 12.07 0.05
1024 0.1 11.9 0 0.1 0

(b) Eb/N0 = 5dB
ML THR THRNPEAK

M ηfd ηfd ηmd ηfd ηmd

64 16.38 97.78 0.12 89.94 0.19
128 4.41 49.25 0.05 31.87 0.1
256 0.6 19.22 0 1.92 0.01
512 0.01 8.94 0 0 0

(c) Eb/N0 = 8dB
ML THR THRNPEAK

M ηfd ηfd ηmd ηfd ηmd

64 3.38 31.07 0.2 7.2 0.19
128 0.17 15.23 0 0.23 0.03
256 0 25.47 0 0 0
512 0 13.94 0 0 0

(d) Eb/N0 = 10dB
ML THR THRNPEAK

M ηfd ηfd ηmd ηfd ηmd

64 0.58 20.85 0 1.44 0
128 0.02 10.71 0 0.02 0
256 0 37.02 0 0 0
512 0 12.11 0 0 0

VI. CONCLUSION

We have shown that near-optimal synchronization of iso-

lated multicarrier symbols can be obtained as a by-product

of matched filtering. The method does not require the sub-

carriers to be down-converted before sampling; however, if this

is done, then the sensitivity to timing errors would significantly

reduce and operation at even lower SNRs may be feasible.

Performance improvements are also possible by modulating

some sub-carriers with known data. The approach of using

glue factor constraints may be extended with some changes

to non-binary signaling schemes as well. These are open for

further work.
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