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Abstract—The paper proposes a new prior model for gray-scale

images in 2D and 3D, and a pertinent algorithm for tomographic

image reconstruction. Using ideas from sparse Bayesian learning,

the proposed prior is a Markov random field with individual

unknown variances on each edge, which allows for sharp edges.

Such a prior model remarkably captures and preserves both

the edge structures and continuous regions of natural images

while being computationally attractive. The proposed reconstruc-

tion algorithm is an efficient EM (expectation maximization)

algorithm where the actual computations essentially reduce to

scalar Gaussian message passing. Simulation results show that

the proposed approach works well even with few projections, and

it yields (slightly) better results than a state-of-the art method.

I. INTRODUCTION

Tomographic reconstruction—the estimation of a 2D or
3D image from noisy projections—has been a challenge for
decades due to both the 2D (or 3D) nature of the problem
and the huge dimensions of the corresponding mathematical
objects. As of today, the filtered back projection (FBP) method
[1] is still the most widely used reconstruction algorithm
in real-world applications, mainly because of the high com-
putational complexity of more advanced methods. However,
FBP has many drawbacks including a blurred reconstruction,
the requirement of a large number of uniformly-distributed
projections, and a high sensitivity to noise in the projections.
In particular, FBP with linear pre- and/or post-filtering is
intrinsically ill-suited to reconstruct sharp edges in the image.

In order to cope with sharp edges, a number of more ad-
vanced methods have been proposed, such as [2]–[7] and many
others. Some of these methods exploit sparsity in the gradient
[4], [5] while others exploit sparsity in a wavelet transform of
the image [6]. In particular, regularization involving the image
total variation greatly improves on FBP and can reconstruct
sharp edges [4], [5]. In addition, these techniques can deal with
a small number of projections, and the projections need not be
uniformly distributed. These methods often use gradient-based
optimization algorithms of reasonable complexity.

Several authors have advocated a Bayesian approach with
a prior in form of a Markov random field (MRF) [7]–[9].
Inference in such models has often been carried out by Markov
chain Monte Carlo techniques that are too slow for most
practical applications. However, in very recent work, fast
Gaussian message passing methods have successfully been
demonstrated [7].

In this paper, we propose a new version of an (improper)
MRF prior with sparsifying NUV terms (normal with unknown
variance). NUV priors are a central idea from sparse Bayesian
learning and automatic relevance determination as in [10]–
[13], see also [14]. The proposed prior is similar to the prior in
[9] (cf. the remark at the end of Section II-C); it is effectively
(but not mathematically) similar also to the spike-and-slab
prior of [7].

We also propose an efficient reconstruction algorithm based
on expectation maximization (EM) (cf. Section III) to estimate
the unknown variances and iterative scalar Gaussian message
passing (cf. Section IV). The actual computations are some-
what similar to those in [7]. In our simulations (cf. Section V),
we obtain better reconstruction results than with the state-of-
the-art method from [4].

II. STATISTICAL MODEL
Each voxel (or pixel) is associated with a real random

variable Xs` , ` 2 {1, . . . , L} with L the total number of voxels
and s` = (i, j, k) the spatial index of that voxel (in 2D, omit
the index k). For simplicity, we assume that each dimension
of the mesh has the same number of units (L 1

3 in 3D or L 1
2 in

2D). We denote by X = (Xs1 , . . . , XsL) the random vector
in RL. We define an order among the spatial indices: for all
spatial indices s` = (i, j, k) and s`0 = (i0, j0, k0)

s` < s`0 , (i < i0) or ((i = i0) & (j < j0))

or ((i = i0) & (j = j0) & (k < k0)) . (1)

We say that two voxels Xs` and Xs`0 (with s` = (i, j, k) and
s`0 = (i0, j0, k0)) are neighbors if and only if

|i� i0|+ |j � j0|+ |k � k0| = 1 . (2)

Let � denote the set of index pairs (`, `0) such that the voxels
indexed by s` and s`0 are neighbors and s` < s`0 .

In the following, we use factor graphs as in [15], [16]
to represent the statistical model and (later on) to describe
Gaussian message passing computations.

A. Measurement Model

Let Q 2 N denote the number of pixels of the detector.
Each measurement ym 2 RQ, m 2 {1, . . . ,M}, is obtained
by projecting the 3D object x 2 RL onto the detector and is
characterized by the (sparse) projection matrix Am 2 RQ⇥L
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Fig. 1. Factor graph representations of the prior model between neighboring
voxels Xs` and Xs`0 , (`, `0) 2 �.

such that ym = Amx. The projection matrices Am are
obtained from a projection method such as the distance-driven
projection [17].

Assuming white Gaussian measurement noise of variance
�2
Z and denoting N = Q ·M , the likelihood of the data is

p (y|x) = 1

(2⇡�2
Z)

N
2

exp

✓
�ky �Axk2

2�2
Z

◆
, (3)

where y 2 RN contains the stacked measurements ym and
A 2 RN⇥L contains the stacked projection matrices Am.

B. Prior Model in 1D

For ease of exposition we first describe the proposed prior
in 1D, i.e., for a discrete-time signal X1, X2, . . . 2 R. In this
case, our model is

Xk+1 = Xk + Uk (4)
Uk =

˜Uk +

¯Uk ⇠ N (0,�2
✏ + �2

k) , (5)

with independent ˜Uk ⇠ N (0,�2
✏ ) and ¯Uk ⇠ N (0,�2

k),
where �2

✏ is fixed and known, but �2
1 ,�

2
2 , . . . are unknown

and estimated by maximum-likelihood. The first term, ˜Uk ⇠
N (0,�2

✏ ), is a random-walk model that favors similar values
for neighboring variables; the NUV term ¯Uk is sparse and
allows for occasional jumps of arbitrary magnitude [14], [18].

C. Prior Model in 2D and 3D

Generalizing the 1D model of Section II-B to 2D and 3D
yields

Xs`0 = Xs` + U`,`0 (6)

for each (`, `0) 2 � (cf. Fig. 1 and Fig. 2), and we have

p̃(x;�2
)

=

Y

(`,`0)2�

1q
2⇡(�2

✏ + �2
`,`0)

exp

 
�
(xs`0 � xs`)

2

2(�2
✏ + �2

`,`0)

!
. (7)

The linear transform from X to U 2 RB can be written as

U = DX , (8)

with D 2 RB⇥L and B = 2L�2L
1
2 in 2D or B = 3L�3L

2
3 in

3D. Unlike the 1D model, this transform is no longer surjective
in 2D and 3D.

We use p̃(x;�2
) as prior model on X, which is (in 2D and

3D) not a probability density function but only a measure. This
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Fig. 2. Factor graph representation of a cycle in the prior model (in 2D or
3D) with (`, `0) 2 �, (`, ˜̀) 2 �, (`0, ˜̀0) 2 � and (˜̀, ˜̀0) 2 �.

prior model is similar in spirit to the one of Curriero & Lele
in [19] and is based on the composite likelihood of Lindsay
in [20]. It can be interpreted as

p̃(x;�2
) =

Z
�(u�Dx)p(u|�2

) du , (9)

by pretending that all the random variables U`,`0 are indepen-
dent of each other a priori, i.e.,

p(u|�2
) =

Y

(`,`0)2�

N (u`,`0 : 0,�
2
✏ + �2

`,`0) . (10)

However, the term �(u � Dx) in (9) projects the random
vector U onto a subspace of linear constraints, which creates
dependencies among the variables U`,`0 . Graphically, those
dependencies introduce cycles as illustrated in Fig. 2.

This prior model captures a basic property of natural
structures: two neighboring voxel values tend to be either
approximately equal (e.g., when the voxels belong to the same
material) or else they may be completely different (e.g., when
the voxels belong to different materials). Furthermore, for
natural structures, the number of abrupt changes should be
substantially smaller than the number of smooth transitions.

A similar prior was used in [9], but with an extra prior on
�2 and, more importantly, without the random-walk terms.
In addition, we use a different estimation approach (and a
different algorithm), as described below.

D. Maximum “Likelihood” Estimation

Inference is done by maximizing the “likelihood” [21]

p̃(y;�2
) =

Z
p(y|x)p̃(x;�2

) dx (11)

=

Z Z
p(y|x)�(u�Dx)p(u|�2

) dx du . (12)

The local maxima of p̃(y;�2
) (see Fig. 3a) are at sparse

solutions [10], [14]: many �2
`,`0 ’s are zero, and sharp edges

in the image are introduced exactly where �2
`,`0 6= 0. Note that

the use of p̃(x;�2
) instead of p(x|�2

) in (11) does not affect
this sparsity behavior and makes the adaptation of the proofs
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Fig. 3. Factor graph representation of p(y|x)�(u�Dx)p(u|�2). Top dashed
box (red): p̃(x;�2). Bottom dashed box (blue): p(y|x)

in [10], [14] straightforward. As the maximization of p̃(y;�2
)

cannot be done in closed form, we derive an EM algorithm in
the next section.

III. EM ALGORITHM
Considering U as hidden variable and starting from an

initial guess �̂2, the EM algorithm consists in iteratively
updating the parameters according to

�̂2
= argmax

�2

E
⇥
ln p̃(y,U;�2

)

⇤
, (13)

where the expectation is taken with respect to the density
p(u|y, �̂2

) (�̂2 being the previous estimate). As can be seen
from (12), this optimization problem splits for each individual
�2
`,`0 , (`, `

0
) 2 �

�̂2
`,`0 = argmax

�2
`,`0

E
⇥
ln p(U`,`0 |�2

`,`0)
⇤

(14)

= max

�
0,E

⇥
U2
`,`0
⇤
� �2

✏

�
. (15)

Since E[U2
`,`0 ] = m2

U`,`0
+ �2

U`,`0
, the EM algorithm relies on

the ability to compute the posterior mean mU`,`0 and variance
�2
U`,`0

of U`,`0 . These computations are addressed in the next
section. Note that this EM update can exactly set �̂2

`,`0 to zero.

IV. GAUSSIAN MESSAGE PASSING ALGORITHM
For fixed �2, we want to compute the posterior mean mU`,`0

and variance �2
U`,`0

of the random variable U`,`0 , (`, `0) 2 �.
Looking at the factor graph in Fig. 3a, all random variables
are multivariate Gaussian and by elementary probability rules

mU = D

✓
DT

(�2
✏ I +Diag(�2

))

�1D +

ATA

�2
Z

◆�1

AT y

�2
Z

(16)

VU = D

✓
DT

(�2
✏ I +Diag(�2

))

�1D +

ATA

�2
Z

◆�1

DT . (17)

These expressions involve the inversion of an L ⇥ L matrix
(where L is the total number of voxels), which is computa-
tionally unattractive.
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Fig. 4. Detailed factor graph representation of the multiplication by the
matrix A. An denotes the nth row of A and an,s` the element (n, s`) of A.

Thus, in order to reduce the computational complexity, we
decompose the cycle-free factor graph in Fig. 3a into the factor
graph of Fig. 3b, where all variables are scalars. The matrix
multiplication by A is further decomposed as shown in Fig. 4.
In this scalar factor graph, we use iterative scalar Gaussian
message passing, which has very low complexity. Note that
both matrices D and A are rather sparse: in 3D, the matrix
D has only 2(3L�3L

2
3
) non-zero elements and the matrix A

has only O(N ·L 1
3
) non-zero elements (since each projection

beam crosses O(L
1
3
) voxels).

It is well known that iterative message passing in Gaussian
graphs with cycles is not guaranteed to converge, but if it
converges, then the means are correct [22]–[24]. However,
the variances do not usually converge to the correct values,
and are of doubtful quality as approximations [22], [23]. In
our specific application, non-convergence can (apparently) be
avoided by appropriately tuning the parameters �2

Z and �2
✏ .

More surprisingly, perhaps, the computed variances are good
enough for the EM algorithm to work well.

Each message passing iteration consists in sending a mes-
sage (i.e., an inverse variance w and a weighted mean ⇠ =

wm) along each edge, first from top to bottom in Fig. 3.b
(downward messages

�→
⇠ and �→w ) and then from bottom to top

(upward messages
←�
⇠ and ←�w). Initially, all messages are set to

some values. Then, we treat each projection (yn,An) sequen-
tially followed by the treatment of the D node at once. X(n)

s`

denotes the replica of Xs` going towards the measurement
yn. X

(`,`0)
s` denotes the replica of Xs` going towards U`,`0 .

Specifically, one message passing iteration works as follows.

1) Process each measurement (yn,An) sequentially. For all
` 2 {1, . . . , L} such that an,` 6= 0, update

�→w
X(n)

s`

:=

�→wXs`
+

←�wXs`
�←�w

X(n)
s`

(18)
�→
⇠
X(n)

s`

:=

�→
⇠Xs`

+

←�
⇠Xs`

�
←�
⇠
X(n)

s`

. (19)
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Fig. 5. Reconstruction results from noise-free projections for the Shepp-Logan phantom using FBP, TV [4], and the proposed method (NUV-GMP). Top:
reconstruction from M = 20 projections. Bottom: reconstruction from M = 30 projections. Also shown is the root-mean squared error (RMSE).

Then, compute

�2
n := �2

Z +

X

`:an,` 6=0

a2n,`
�→w�1

X(n)
s`

(20)

mn := yn �
X

`:an,` 6=0

an,`
�→w�1

X(n)
s`

�→
⇠
X(n)

s`

. (21)

For all ` 2 {1, . . . , L} such that an,` 6= 0, update

←�wXs`
:=

←�wXs`
�←�w

X(n)
s`

(22)
←�
⇠Xs`

:=

←�
⇠Xs`

�
←�
⇠
X(n)

s`

(23)

←�w
X(n)

s`

:= a2n,`

✓
�2
n � a2n,`

�→w�1

X(n)
s`

◆�1

(24)

←�
⇠
X(n)

s`

:=

←�w
X(n)

s`

an,`

✓
mn + an,`

�→w�1

X(n)
s`

�→
⇠
X(n)

s`

◆
(25)

←�wXs`
:=

←�wXs`
+

←�w
X(n)

s`

(26)
←�
⇠Xs`

:=

←�
⇠Xs`

+

←�
⇠
X(n)

s`

. (27)

2) Process the D node. For each pair (`, `0) 2 �, update

←�w
X(`,`0)

s`

:=

←�wXs`
+

�→wXs`
��→w

X(`,`0)
s`

(28)
←�
⇠
X(`,`0)

s`

:=

←�
⇠Xs`

+

�→
⇠Xs`

�
�→
⇠
X(`,`0)

s`

, (29)

and similarly for the upward messages on edge X
(`,`0)
s`0 . Then,

compute

�→w
X(`,`0)

s`

:=

←�w
X(`,`0)

s`0

✓
1 + (�2

✏ + �2
`,`0)
←�w
X(`,`0)

s`0

◆�1

(30)

�→
⇠
X(`,`0)

s`

:=

←�
⇠
X(`,`0)

s`0

✓
1 + (�2

✏ + �2
`,`0)
←�w
X(`,`0)

s`0

◆�1

, (31)

and similarly for the downward messages on edge X
(`,`0)
s`0 .

3) For each ` 2 {1, . . . , L}, compute the messages sent from
node D to node A

�→wXs`
:=

X

`0:(`,`0)2�

�→w
X(`,`0)

s`

+

X

`0:(`0,`)2�

�→w
X(`0,`)

s`

(32)

�→
⇠Xs`

:=

X

`0:(`,`0)2�

�→
⇠
X(`,`0)

s`

+

X

`0:(`0,`)2�

�→
⇠
X(`0,`)

s`

. (33)

When convergence is achieved, the posterior mean mU`,`0

and variance �2
U`,`0

can be computed with the formulae

1

�2
U`,`0

=

1

�2
`,`0 + �2

✏

+

←�w
X(`,`0)

s`

←�w
X(`,`0)

s`0←�w
X(`,`0)

s`

+

←�w
X(`,`0)

s`0

(34)

mU`,`0 = �2
U`,`0

←�w
X(`,`0)

s`

←�
⇠
X(`,`0)

s`0
�←�w

X(`,`0)
s`0

←�
⇠
X(`,`0)

s`←�w
X(`,`0)

s`0
+

←�w
X(`,`0)

s`

. (35)

Note that all loops over the voxel index ` and over the indices
in � can be performed in parallel.



Fig. 6. Estimated parameters �̂2
`,`0 for M = 30 projections. Left: along

horizontal neighbors; right: along vertical neighbors. (⇡ 98% of zeros)

V. SIMULATION RESULTS

We illustrate the proposed approach with 2D examples, but
our 3D simulations (not reported in this paper) support the
same conclusions. In Fig. 5, we show the reconstruction results
for the Shepp-Logan phantom [25] with 256 ⇥ 256 pixels
using M = 20 and M = 30 projections onto a line detector
with Q = 512 pixels. The projections are obtained using
the distance-driven method [17] with a fan-beam geometry.
Our algorithm (NUV-GMP) is compared with a standard FBP
method and the state-of-the-art total variation (TV) method
[4]. For our algorithm, we used �2

✏ = 10

�4, �2
Z = 10

�2, and
the �2

`,`0 ’s initialized to 0.1 · �2
✏ . We used 15 EM updates,

and 15 message passing iterations within each EM update.
The estimated image is obtained from the posterior mean of
X. For a fair comparison, we use 200 iterations for the TV
method.

The results in Fig. 5 indicate that the proposed method
greatly improves on FBP and yields slightly better reconstruc-
tions than the TV method.

In Fig. 6, we plot the estimated variances �̂2
`,`0 from our

algorithm for the case of 30 projections. We observe that the
sparsity structure of �̂2 directly reflects the edge structure of
the reconstructed image. Note that both �2

Z and �2
✏ can be

tuned to control the sparsity level.

VI. CONCLUSION

We have proposed a new voxel-domain (or pixel-domain)
prior for 3D images (or 2D images, respectively) that promotes
both continuity and occasional sharp transitions, and we have
also proposed a corresponding practical reconstruction algo-
rithm based on EM and scalar Gaussian message passing. In
our simulations with the Shepp-Logan phantom, the proposed
approach yields slightly better reconstructions than a state-
of-the-art method. Even better results (not reported here) are
obtained for phantoms that are not piecewise constant.

The proposed approach is most similar in spirit to [7],
of which we became aware only very recently. Preliminary
simulation results indicate that the performance is similar as
well, but a detailed comparison has not yet been carried out.

REFERENCES

[1] G. T. Herman, Fundamentals of Computerized Tomography: Image

Reconstruction From Projections. Springer-Verlag, 2009.
[2] J. A. Fessler, “Penalized weighted least-squares image reconstruction

for positron emission tomography,” IEEE Trans. on Medical Imaging,
vol. 13, no. 2, pp. 290–300, 1994.

[3] S. Maeda, W. Fukuda, A. Kanemura, and S. Ishii, “Maximum a
posteriori X-ray computed tomography using graph cuts,” in Journal

of Physics: Conference Series, vol. 233, no. 1. IOP Publishing, 2010.
[4] E. Y. Sidky and X. Pan, “Image reconstruction in circular cone-beam

computed tomography by constrained, total-variation minimization,”
Physics in Medicine and Biology, vol. 53, no. 17, p. 4777, 2008.

[5] M. Yan and L. A. Vese, “Expectation maximization and total variation-
based model for computed tomography reconstruction from undersam-
pled data,” in Proc. SPIE 7961, Medical Imaging. Int. Society for
Optics and Photonics, 2011.

[6] M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: The application
of compressed sensing for rapid MR imaging,” Magnetic Resonance in

Medicine, vol. 58, no. 6, pp. 1182–1195, 2007.
[7] M. Borgerding, P. Schniter, J. Vila, and S. Rangan, “Generalized approx-

imate message passing for cosparse analysis compressive sensing,” in
IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP),
2015, pp. 3756–3760.

[8] N. Dobigeon, A. O. Hero, and J.-Y. Tourneret, “Hierarchical Bayesian
sparse image reconstruction with application to MRFM,” IEEE Trans.

on Image Processing, vol. 18, no. 9, pp. 2059–2070, 2009.
[9] G. K. Chantas, N. P. Galatsanos, and A. C. Likas, “Bayesian restoration

using a new nonstationary edge-preserving image prior,” IEEE Trans.

on Image Processing, vol. 15, no. 10, pp. 2987–2997, 2006.
[10] M. E. Tipping, “Sparse Bayesian learning and the relevance vector

machine,” J. Machine Learning Research, vol. 1, pp. 211–244, 2001.
[11] D. P. Wipf and B. D. Rao, “Sparse Bayesian learning for basis selection,”

IEEE Trans. on Signal Processing, vol. 52, no. 8, pp. 2153–2164, 2004.
[12] R. M. Neal, Bayesian Learning for Neural Networks. Springer-Verlag,

2012, vol. 118.
[13] S. D. Babacan, R. Molina, M. N. Do, and A. K. Katsaggelos, “Bayesian

blind deconvolution with general sparse image priors,” in Computer

Vision–ECCV 2012. Springer, 2012, pp. 341–355.
[14] H.-A. Loeliger, L. Bruderer, H. Malmberg, F. Wadehn, and N. Zalmai,

“On sparsity by NUV-EM, Gaussian message passing, and Kalman
smoothing,” in Information Theory and Applications Workshop (ITA), La

Jolla, CA, Feb 2016. [Online]. Available: http://arxiv.org/abs/1602.02673
[15] H.-A. Loeliger, “An introduction to factor graphs,” IEEE Signal Pro-

cessing Magazine, vol. 21, no. 1, pp. 28–41, 2004.
[16] H.-A. Loeliger, J. Dauwels, J. Hu, S. Korl, L. Ping, and F. R. Kschis-

chang, “The factor graph approach to model-based signal processing,”
Proceedings of the IEEE, vol. 95, no. 6, pp. 1295–1322, 2007.

[17] B. De Man and S. Basu, “Distance-driven projection and backprojection
in three dimensions,” Physics in Medicine and Biology, vol. 49, no. 11,
p. 2463, 2004.

[18] N. Zalmai, H. Malmberg, and H.-A. Loeliger, “Blind deconvolution of
sparse but filtered pulses with linear state space models,” in IEEE Int.

Conf. on Acoustics, Speech and Signal Processing (ICASSP), 2016, pp.
4194–4198.

[19] F. C. Curriero and S. Lele, “A composite likelihood approach to
semivariogram estimation,” Journal of Agricultural, Biological, and

Environmental Statistics, pp. 9–28, 1999.
[20] B. G. Lindsay, “Composite likelihood methods,” Contemporary Mathe-

matics, vol. 80, no. 1, pp. 221–39, 1988.
[21] J. Berger, Statistical Decision Theory And Bayesian Analysis, 2nd ed.,

ser. Series in statistics. Springer, 1985.
[22] Y. Weiss and W. T. Freeman, “Correctness of belief propagation in

Gaussian graphical models of arbitrary topology,” Neural Computation,
vol. 13, no. 10, pp. 2173–2200, 2001.

[23] J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Generalized belief
propagation,” in NIPS, vol. 13, 2000, pp. 689–695.

[24] D. M. Malioutov, J. K. Johnson, and A. S. Willsky, “Walk-sums and
belief propagation in Gaussian graphical models,” J. Machine Learning

Research, vol. 7, pp. 2031–2064, 2006.
[25] L. A. Shepp and B. F. Logan, “The Fourier reconstruction of a head

section,” IEEE Trans. on Nuclear Science, vol. 21, no. 3, pp. 21–43,
1974.


