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ABSTRACT

Detecting and inferring the trajectory of a moving magnet
from magnetic field measurements is a challenge due to a
wide range of time scales and amplitudes of the recorded sig-
nals and limited computational power of devices embedding
a magnetometer. In this paper, we model the magnetic field
measurements using a bank of autonomous linear state space
models and provide an efficient algorithm based on local like-
lihood filtering for reliably detecting and inferring the gesture
causing the magnetic field variations.

Index Terms— Gesture recognition, linear state space
models, local likelihood filtering, magnetometer

1. INTRODUCTION

Contemporary smartphones embed a magnetometer that mea-
sures the magnetic field in three dimensions. Sweeping over
the phone with a magnet induces magnetic field variations
which are measured by the magnetometer. Given these 3-
channel signals (e.g., as plotted in Figure 2), we want to
design a real-time smartphone application which infers the
movement of the magnet. Such gestures can be used to give
commands to the phone without any contact and possibly
with obstructing objects.

A current approach [1] consists in defining a finite set of
movements and extracting a feature vector from the measure-
ments. Then, a multi-layer perceptron assigns each feature
vector to one of the predefined movements. This type of
methods considerably limits the number of possible gestures
and generally requires a good SNR (i.e., a strong magnet).

In the context of tracking a general target modeled as a
magnetic dipole using magnetic field measurements, popular
approaches [2–7] consist in using recursive Bayesian estima-
tion methods (e.g., a particle filter or an extended Kalman
filter (EKF)) for tracking the position, velocity, and magnetic
moment of the target. Such algorithms are able to track ar-
bitrary trajectories. However these approaches require two
magnetometers and considerable computational power. Be-
sides, the reported results were obtained with much lower
noise than what is encountered with smartphone sensors.

Another approach consists in extracting and handling in-
formation from the dipole equation. Such information is in-
cluded in the EKF equations [5,6] and is also exploited to val-
idate a physical model [7]. In [8], Otnes uses a finite-impulse
response (FIR) matched filter derived from the dipole equa-
tion to detect straight-line movements. Unfortunately, the sig-
nals are processed blockwise (not computationally efficient)
and a large detection delay per time-scale is reported. As a
result this method is not suitable for real-time application.

In this paper, we propose an efficient algorithm for detect-
ing and inferring uniform straight-line movements of a mag-
net with only one magnetometer. Since strong magnets are
potentially harmful for surrounding magnetic devices such as
hard drives or stripe cards, the recognition should also work
in a low SNR regime with weak magnets that are ubiquitous
in everyday life (e.g., standard earphones). Furthermore the
algorithm is intended to be implemented on a smartphone and
to run in real-time. Therefore a low complexity (linear if pos-
sible) and a short detection delay are of main importance.

After deriving useful properties of the magnetic field in-
duced by a moving magnet in Section 2, this paper describes
an algorithm which meets all the above requirements. We
model the magnetic field measurements with a bank of low-
order state space models where the observation matrix con-
tains the information of the movement (Section 3). Efficient
recursions are derived to compute localized squared errors
and a method is described for estimating the gesture param-
eters (Section 4). The algorithm is tested on simulated and
recorded data (Section 5) and demonstrates promising results.

2. MAGNETIC FIELD CHARACTERIZATION

We use the coordinate system of the magnetometer. Let rk ∈
R3 be the magnet position at time index k ∈ Z. The magnetic
field vector Bk induced by a dipole at position rk is

Bk =
µ0

4π

(
3 〈m, rk〉 rk
‖rk‖5

− m

‖rk‖3

)
, (1)

where m ∈ R3 is the magnetic moment of the magnet and
µ0 = 4π × 10−7 N/A2 is the vacuum permeability.
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We consider a discrete uniform rectilinear movement rk ∈
R3, k ∈ Z, which starts and ends far away from the magne-
tometer (i.e., ‖rk‖ → +∞ as k → ±∞). Without loss of
generality we assume that the minimum distance r is reached
at k = 0 and thus, such movement can be parametrized as

rk = rdr + kvdv = r(dr +
k

τ
dv), (2)

where r ∈ R+ is the minimum distance to the magnetometer,
dr ∈ R3 is the unit direction when achieving this minimum
distance, v ∈ R+ is the constant per sample speed, dv ∈ R3

is the unit direction of the movement, and τ = r
v is the time-

scale parameter. Note that 〈dr,dv〉 = 0 due to the minimum
distance characterization of dr.

Let (ex, ey, ez) be the canonical basis of the magnetome-
ter. A uniform straight-line movement can be reparametrized
by (r,R, τ) ∈ R+×SO3(R)×R+. Indeed, by ensuring that
Rex = dr, Rey = dv , and Rez = dr × dv , we get

rk = rR(ex +
k

τ
ey). (3)

Note that ‖rk‖2 = r2(1 +
(
k
τ

)2
) is independent of R.

The moment m = mdm (m ∈ R+ and ‖dm‖ = 1) of the
magnet is considered independent of time (i.e., no rotation
of the magnet during a movement). Furthermore we assume
that dm is orthogonal to the direction of the movement dv .
Therefore there exists a unique φ ∈]− π, π] such that

dm = cos(φ)Rex + sin(φ)Rez. (4)

This last assumption is approximately satisfied if the magnet
is held correctly. The inner product 〈m, rk〉 simplifies into

〈m, rk〉 = mr cos(φ) (5)

and is now independent of time.
Finally, plugging (3), (4), and (5) into (1) and writing it in

the matrix form in the basis (ex, ey, ez), we get

Bk = λRDφFGk (6)

Gk =
1(

1 +
(
k
τ

)2) 5
2

1− 1
2

(
k
τ

)2
k
τ

1 +
(
k
τ

)2
 (7)

with Dφ =

cosφ 0 0
0 cosφ 0
0 0 sinφ

, F =

2 0 0
0 3 0
0 0 −1

, and

λ = µ0m
4πr3 . As a movement starts and ends far away from the

magnetometer, Bk → 0 as k → ±∞.
The parameter τ essentially accounts for the time-scale

(i.e, the signals are roughly supported on [−8τ, 8τ ]), r is the
closest distance to the magnetometer,R contains the direction
of the gesture, and φ pinpoints the direction of the moment.
In order to uniquely define rk from Bk we must restrict φ to
the interval ] − π

2 ,
π
2 [, which constrains the way we hold the

magnet when performing a movement.

3. MODELING MAGNETIC FIELD SIGNALS

Consider for a moment continuous-time signals rather than
discrete-time signals (replace k ∈ Z by t ∈ R).
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Fig. 1. Shape of the components of Gk and Ĝk for a given τ

Looking at Figure 1, it seems that modeling each com-
ponent of G(t) using a 2nd-order linear state space model is
good enough for our gesture recognition purposes. Taking
into consideration the symmetry properties and the scaling of
the components of G(t), the estimated 3D-signal has the form

Ĝ(t) =

e−αx|
t
τ | cos(ωx| tτ |+Φx)

cos Φx

Ke−αy|
t
τ | sin(ωy

t
τ )

e−αz|
t
τ | cos(ωz| tτ |+Φz)

cos Φz

 . (8)

The parameters αx, ωx, Φx, K, αy , ωy , αz , ωz , and Φz must
not depend on τ and can be chosen to minimize∫ +∞

−∞
‖G(t)− Ĝ(t)‖2 dt. (9)

Unfortunately, analytical expressions are not available. There-
fore we determine some of the parameters by imposing mean-
ingful properties of G(t) to Ĝ(t):

1. first derivatives of Gx(t) and Gz(t) both zero at t = 0
2. position and value of extrema of Gy(t)

which translates into

Φa = − arctan

(
αa
ωa

)
+ π,∀a ∈ {x, z} (10)

ωy = 2 arctan (ry) (11)

K =

(
4

5

) 5
2 1

2ry

√
1 + r2

y e
1
ry

arctan ry (12)

with ry =
ωy
αy

(similar definition for rx and rz , respectively).
The remaining parameters αx, ωx, ry , αz , and ωz can be

found by a grid-search minimization of the expression in (9).
The parameters we obtained are rx = 0.83, ωx = 1.884,
ry = 0.64, ωy = 1.139, rz = 0.12, ωz = 0.239. In Figure 1,
we observe G(t) and its estimate Ĝ(t).



Using the following quantities

R2(ω) =

[
cosω − sinω
sinω cosω

]
(13)

Ap
a = e

αa
τ R2(

ωa
τ

),∀a ∈ {x, y, z} (14)

Af
a = e−

αa
τ R2(−ωa

τ
),∀a ∈ {x, z} (15)

Af
y = e−

αy
τ R2(

ωy
τ

) (16)

Ap = Diag(Ap
x, A

p
y, A

p
z) ∈ R6×6 (17)

Af = Diag(Af
x, A

f
y, A

f
z) ∈ R6×6 (18)

s =
[
1 0 1 0 1 0

]T
(19)

C̃ =

1 tan Φx 0 0 0 0
0 0 0 K 0 0
0 0 0 0 1 tan Φz

 (20)

we can generate B̂k with a 6th-order linear state space model

B̂k =

{
λRDφCA

k
p s , k ≤ 0

λRDφCA
k
f s , k > 0

, (21)

where C = FC̃. As the state transition matrices Ap and Af
depend on τ , we need one model per time scale.

4. DETECTING AND INFERRING GESTURES

Suppose we observe the noisy magnetic field measurements
y1, . . . ,yn ∈ R3 and we want to test whether a gesture was
made at time step k = n − δ for a fixed delay δ ∈ N. Since
our algorithm will run in real-time (multiple gestures will be
made) we localize the squared error with an exponential win-
dow of parameter γτ < 1 (depending on τ only):

Jk(λ,R, φ, τ) =

k∑
i=1

γ|i−k|τ ‖yi − λRDφCA
i−k
p s‖2

+
n∑

i=k+1

γ|i−k|τ ‖yi − λRDφCA
i−k
f s‖2. (22)

4.1. Efficient Computation of the Cost Function

Both terms in (22) can be efficiently computed using forward
and backward recursions [9]. Indeed, expanding the first term
of the cost leads to
k∑
i=1

γ|i−k|τ ‖yi − λRDφCA
i−k
p s‖2

=

k∑
i=1

γ|i−k|τ ‖yi‖2 − 2λTr

(
RDφC

k∑
i=1

γ|i−k|τ Ai−kp syT
i

)

+λ2 Tr

(
D2
φC

k∑
i=1

γ|i−k|τ Ai−kp ssT(Ai−kp )TCT

)
(23)

= −→κk − 2λTr
(
RDφC

−→
ξ k

)
+ λ2 Tr

(
D2
φC
−→
WkC

T
)
, (24)

where Tr(M) =
∑
iMi,i,, −→κk ∈ R,

−→
ξ k ∈ R6×3, and

−→
Wk ∈

R6×6. In terms of these parameters, the forward recursion is
−→
Wk = γτA

−1
p
−→
Wk−1

(
A−1

p

)T
+ ssT (25)

−→
ξ k = γτA

−1
p
−→
ξ k−1 + syT

k (26)
−→κk = γτ

−→κk−1 + ‖yk‖2 (27)

with the initializations
−→
W0 = 0,

−→
ξ 0 = 0, and −→κ0 = 0.

The second term of the cost function can be parametrized
in a same way, leading to the backward recursion

←−
Wk = γτ

(
Af
←−
Wk+1A

T
f +Afss

TAT
f

)
(28)

←−
ξ k = γτ

(
Af
←−
ξ k+1 +Afsy

T
k+1

)
(29)

←−κk = γτ
(←−κk+1 + ‖yk+1‖2

)
(30)

with the initializations
←−
Wn = 0,

←−
ξ n = 0, and←−κn = 0.

Finally, denoting Wk =
−→
Wk +

←−
Wk, ξk =

−→
ξ k +

←−
ξ k, κk =

−→κk +←−κk, the cost function Jk(λ,R, φ, τ) is

κk − 2λTr (RDφCξk) + λ2 Tr
(
D2
φCWkC

T
)
. (31)

The backward messages introduce a fixed delay of δ =
n− k. Note that when a new observation yn+1 is available, a
more efficient update for the backward messages is
←−
W

(n+1)
k+1 =

←−
W

(n)
k (32)

←−
ξ

(n+1)
k+1 = γ−1

τ A−1
f
←−
ξ

(n)
k + γδτA

δ
f sy

T
n+1 − syT

k+1 (33)
←−κ (n+1)
k+1 = γ−1

τ
←−κ (n)
k + γδτ‖yn+1‖2 − ‖yk+1‖2 (34)

where (·)(n) denotes the message when observing y1, . . . ,yn.

4.2. Minimizing the Cost Function

For a fixed time scale τ , we focus on minimizing Jk with
respect to λ, R, and φ. Using short notations, we have

J(λ,R, φ) = κ− 2λTr (RDφM) + λ2 Tr
(
D2
φW

)
, (35)

with M,W ∈ R3×3 and W a symmetric positive semi-
definite matrix. We reparametrize the function such that

J(β,O, η) = κ− 2β Tr (OLηM) + β2 Tr
(
L2
ηW
)
, (36)

with β = λ cosφ ≥ 0, η = | tanφ| ≥ 0, Lη = Diag(1, 1, η),

O = R

1 0 0
0 1 0

0 0 tanφ
| tanφ|

 ∈ O3(R). (37)

For a fixed η, using the SVD decomposition LηM =
UηΣηV

T
η , the optimum values are given by (Orthogonal Pro-

crustes problem [10]) Ô = VηU
T
η , β̂ =

Tr(Ση)

Tr(L2
ηW)

, and

min
β,O

J(β,O, η) = κ− Tr (Ση)
2

Tr
(
L2
ηW
) . (38)



Unfortunately, a joint minimization of the cost with re-
spect to β, O, and η did not lead to a drastically more ef-
ficient search of the optimum parameters. Therefore a grid
search (i.e., discretization of φ) is used

Jmin = min
i∈I

min
β,O

J(β,O, ηi), (39)

where I ⊂ N. The range of φ can be restricted to [0, π2 [.
Indeed consider the two optimization problems for φ and−φ.
They share the same optimum Ô = VηU

T
η but the relation

det Ô = ±1 (from Equation (37)) is valid only for one of the
φ’s, which induces a smaller cost for the incompatible φ. We
know right away the best angle to choose between φ and −φ.

4.3. Detection and Estimation

We define the local log-likelihood function [9]

ln p̆k(y1, . . . , yn;λ,R, φ, τ) = −1

2
ln(2πJk(λ,R, φ, τ))−1

2
.

(40)
In order to detect a gesture at time step k = n− δ, for a given
time-scale τ , we use the hypothesis test
• H0: λ = 0
• H1: λ > 0, R ∈ SO3(R), φ ∈]− π

2 ,
π
2 [

and the following log-likelihood ratio

LLR
(τ)
k = ln

max
λ,R,φ

p̆k(y1, . . . , yn;λ,R, φ, τ)

p̆k(y1, . . . , yn;λ = 0, R, φ, τ)
, (41)

where the maximization in the numerator is such that λ ≥
0, R ∈ SO3(R), φ ∈] − π

2 ,
π
2 [. The denominator does not

depend on R and φ due to λ = 0.
At time step k, let η̂k be the optimum η in the discrete

set {ηi, i ∈ I}, which can be found using (38) and (39). The
approximate log-likelihood ratio at time scale τ is

LLR
(τ)
k = −1

2
ln

1−
Tr
(
Ση̂k

)2
κk Tr

(
L2
η̂k
CWkCT

)
 . (42)

In order to take into account several time scales, we dis-
cretize the parameter τ ∈ {τj , j ∈ J ⊂ N}. Each τ has its
own state space model and the final quantity we use is

LLRk = max
j∈J

LLR
(τj)
k . (43)

If LLRk is above a threshold ε and locally maximum then a
gesture is detected and the estimated gesture parameters can
be retrieved using the method described in Subsection 4.2.

5. RESULTS

First we test our algorithm on simulated data generated using
the dipole equation (1) with additive white Gaussian noise of

variance 6.25× 10−2, a magnet with µ0m
4π = 4× 10−4 J/µT,

and a magnetometer of sampling frequency fs = 40 Hz. We
use three cases: 1) r = 3 cm, v = 30 cm/s, 2) r = 3 cm, v =
60 cm/s, 3) r = 6 cm, v = 30 cm/s. For each scenario we
vary the directions dr, dv , and dm to produce 10000 gestures.

For the algorithm, τ and φ are uniformly sampled respec-
tively from 1 to 30 with a step of 1 and from 0 to 90◦ with
a step of 0.5◦. The results are summarized in Table 1 which
shows very good detection, localization, and estimation abili-
ties. (d, d̂) denotes the angle between the direction d and the
estimated direction d̂. |` − ˆ̀| is the time index shift between
the time and estimated time of a gesture detection.

Errors |`− ˆ̀| |r−r̂|r (dr, d̂r)
|v−v̂|
v (dv, d̂v) |φ− φ̂|

Case 1 0 0.010 2.2◦ 0.019 0.8◦ 1.1◦

Case 2 0 0.008 2.4◦ 0.012 1.2◦ 1.3◦

Case 3 0.04 0.038 11.2◦ 0.118 5.2◦ 9.1◦

Table 1. Average errors for 10000 simulated gestures

The algorithm is also tested on an iPhone 5 with iOS7,
which embed a AK8975 [11] magnetometer (fs = 40Hz).
We use an Apple earphone (with µ0m

4π = 4 × 10−4 J/µT)
as magnet. Figure 2 shows a typical observed signal and its
estimate. The algorithm demonstrates promising results even
for tracking movements performed by a human.
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Fig. 2. Raw measurements and estimated signals

6. CONCLUSION

We have modeled magnetic field variations produced by a
moving magnet with a bank of 6th-order linear state space
models. Each model accounts for a specific time-scale. The
information on the gesture is contained in the observation ma-
trix, which is restricted to a specific set. Due to nice recur-
sions for computing the localized squared error and the ability
to get a fast approximation of the minimum cost, this simple
model is suitable for a robust and efficient detection and esti-
mation of uniform straight-line movements performed with a
magnet. This algorithm has the convenient property to run in
real-time on modern mobile devices.
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