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Abstract—The paper addresses the problem of joint signal

separation and estimation in a single-channel discrete-time signal

composed of a wandering baseline and overlapping repetitions of

unknown (or known) signal shapes. All signals are represented

by a linear state space model (LSSM). The baseline model is

driven by white Gaussian noise, but the other signal models are

triggered by sparse inputs. Sparsity is achieved by normal priors

with unknown variance (NUV) from sparse Bayesian learning.

All signals and system parameters are jointly estimated with

an efficient expectation maximization (EM) algorithm based on

Gaussian message passing, which works both for known and

unknown signal shapes. The proposed method outputs a sparse

multi-channel representation of the given signal, which can be

interpreted as a signal labeling.

I. INTRODUCTION

Many signals (including, in particular, raw physiological
signals) are superpositions of a wandering baseline and several
(possibly overlapping) repetitive signal shapes from different
sources. For instance, an abdominal electrocardiogram (ECG)
of a pregnant woman, as in the upper plot of Fig. 3, is
composed of the maternal ECG, the fetal ECG, and a wander-
ing baseline mainly caused by the mother’s breathing. The
goal of the paper is to decompose a single-channel signal
into a baseline and unknown but repetitive signal shapes.
This includes learning the signal shapes and finding their
occurrences.

An obvious approach to such problems is successive can-
cellation, where one signal component after the other is
identified and subtracted (e.g., see [1], [2]). The baseline
is often removed with a frequency-selective filter [1] while
other signal shapes are identified based on some criterion
such as periodicity [2]. However, errors in the cancellation
will accumulate, which limits the robustness of such methods.
Moreover, using a frequency-selective filter for the baseline
extraction deforms the other signal shapes.

The problem we want to solve can be expressed as a
blind separation of sparse convolutive sources from single-
channel measurements. Blind source separation (BSS) has
been a research topic for decades and many algorithms, such
as the popular ICA [3], [4], have been proposed [5]–[7].
Most of these algorithms require more than one measurement
channel; therefore, several attempts have been made to first
transform single-channel measurements into a multi-channel
signal (e.g, with an overcomplete wavelet transform [8]–[10])
before using a standard BSS algorithm. The performance of

such an approach is tightly bound to the choice of a meaningful
transform, which may be hard to find. For instance, single-
channel ICA fails to separate the fetal ECG from the maternal
ECG, as reported in [11].

Along with the emergence of compressed sensing [12], the
BSS problem has been considered with the assumption that
source signals can be sparsely represented in some transform
domain [13]–[16], which allows the separation of more sources
than measurement channels. Learning the signal dictionary
where sources are sparsely represented is an essential part
of the problem. Several dictionary learning algorithms such
as K-SVD [17] have been proposed (e.g., [14], [16]) and
successfully applied for various BSS problems as in [18], [19].
Most of these methods iterate between estimating a sparse
source vector given a dictionary and updating a dictionary
given a sparse source vector. These two steps do not normally
share a common objective function [16], and both steps are
usually computationally demanding. Especially, the dictionary
update often requires some approximation to maintain afford-
able computations [16]. Furthermore, with a single channel,
most of these algorithms require to strongly regularize the
dictionary in order to output good results as in [19], which
is not always easy to incorporate in the learning rules. More
importantly, such methods can fail since real-world signals
such as raw physiological signals and in particular wandering
baselines are not necessarily sparse in some domain [20].

In this paper, we advocate the use of linear state space
models (LSSM) for solving the joint problem of signal sepa-
ration and estimation. Indeed, LSSMs are versatile enough to
generate, within a common representation, smoothly-varying
signals, such as a wandering baseline, with white Gaussian
noise inputs [21], [22] and repetitive signal shapes with sparse
inputs, modeled as zero-mean normal variables with unknown
variances (NUV) [23]–[25] (cf. Sec. II). We provide an ef-
ficient expectation maximization (EM) algorithm based on
Gaussian message passing for jointly estimating the input and
system parameters by maximum likelihood. We demonstrate
that all parameters can be updated jointly with closed-form
expressions (cf. Sec. III). In addition, the use of the modified
Bryson-Frazier smoother [25], [26], which is numerically
stable and avoids matrix inversions, allows to compute all
expectations required in EM with low complexity (cf. Sec. IV).
Finally, in Sec. V, we present results of our method for the
single-channel fetal ECG signal separation problem.
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II. PROBLEM SETUP AND SIGNAL MODEL

Let y = (y1, . . . , yK) 2 RK be a given single-channel
discrete-time signal of length K 2 N. We wish to explain the
signal y as a superposition of a smooth baseline s[0] 2 RK

and L 2 N signal components s[`] 2 RK , ` 2 {1, . . . , L}, with
each component consisting of repetitions (across time) of an
unknown or known signal shape. Occurrences of a signal shape
can vary in amplitude and overlap with other signal shapes,
including its own. Specifically, we have

yk = s
[0]
k +

LX

`=1

s
[`]
k + Zk, (1)

for k 2 {1, . . . ,K}, with observation noise Zk
iid⇠ N (0,�2

Z).
Each signal component s[`] is modeled with its own un-

known LSSM of (given) order n` 2 N such that
(
X

[`]
k = A`X

[`]
k�1 + b`U

[`]
k + E

[`]
k

s
[`]
k = c`X

[`]
k ,

(2)

with states X
[`]
k 2 Rn` (X [`]

0 = 0), A` 2 Rn`⇥n` , c` 2 R1⇥n` ,
b` 2 Rn` , U

[`]
k 2 R, and E

[`]
k

iid⇠ N (0, VE[`]) with VE[`] 2
Rn`⇥n` a symmetric positive definite matrix.

For the signal components corresponding to repetitive signal
shapes (i.e., ` > 0), we assume that the inputs U

[`]
1 , . . . , U

[`]
K

are sparse and that VE[`] = �2
E`
In` . These assumptions simply

mean that s[`] is composed of a few scaled and time-shifted
versions of the nominal shape

�`(i) =

⇢
0, for i < 0

c`A
i
`b`, for i � 0 .

(3)

The isotropic Gaussian noise term, introduced via �2
E`

, ac-
counts for variability in the signal shapes and reveals to be
quite useful, as discussed in Sec. V. In case of successful
estimation, the variance �2

E`
should be small.

We model sparse inputs with independent NUV terms [23]:

U
[`]
k ⇠ N

⇣
0,�2

U
[`]
k

⌘
. (4)

While n` is assumed fixed, the parameters c`, A`, b`, �2
E`

, and
�2
U

[`]
1

, . . . ,�2
U

[`]
K

are unknown and need to be estimated. If we
wish to restrict the allowed signal shapes, we can simply con-
strain c`, A`, and b`. In this way, we can handle a known signal
shape. Many real-world signals are well-approximated with
such LSSM representation, which comprises signal shapes of
both finite (when A` is nilpotent) and infinite support. The
former is popular in the BSS literature [5], [7] but the latter
is not.

For the smooth baseline model (i.e., ` = 0), we assume that
U

[0]
k = 0, for all k, and

VE[0] = �2
E0

V0, (5)

with V0 2 Rn0⇥n0 a symmetric positive definite matrix. Fur-
thermore, c0, A0, and V0 are fixed, and only �2

E0
is unknown

and to be estimated. Such model generates filtered white
Gaussian noise, which includes, under a suitable choice of

parameters, spline smoothing [21], [22]. Note that the baseline
model is the sparsest signal component in the representation
(2). In the BSS literature, such a baseline is normally filtered
out in a preprocessing step, but we will treat it as just another
signal component.

Finally, combining the LSSMs of the signal components, the
signal y is the output of the joint LSSM of order n =

PL
`=0 n`

⇢
Xk = AXk�1 +BUk + Ek

yk = CXk + Zk ,
(6)

for k 2 {1, . . . ,K}, with states Xk 2 Rn (obtained by stack-
ing X

[0]
k , . . . , X

[L]
k ), NUV-inputs Uk = (U

[1]
k , . . . , U

[L]
k )

T 2
RL, white Gaussian noise Ek

iid⇠ N (0, VE),

VE = diag(�2
E0

V0,�
2
E1

In1 , . . . ,�
2
EL

InL) 2 Rn⇥n (7)
A = diag(A0, . . . , AL) 2 Rn⇥n (8)
C =

⇥
c0 . . . cL

⇤
2 R1⇥n (9)

B =


0n0⇥L

diag(b1, . . . , bL)

�
2 Rn⇥L. (10)

Thus, the joint problem of signal separation and estimation
reduces to the estimation of the input and system parameters

✓ = {C,A,B,�2
U

[1]
1

, . . . ,�2
U

[L]
K

,�2
E0

, . . . ,�2
EL

,�2
Z}. (11)

In the following, we provide an efficient EM algorithm to
estimate ✓ by maximum likelihood. Several authors [23]–
[25], [27] pointed out that the local maxima of the likelihood
function are such that the number of non-zero elements among
�
U

[`]
k

, ` 2 {1, . . . , L}, k 2 {1, . . . ,K}, is substantially smaller
than L · K. Essentially, the maximization of the marginal
likelihood with respect to a single parameter �

U
[`]
k

leads to
a thresholding effect that can exactly set �

U
[`]
k

to zero.

III. JOINT EM ALGORITHM

Considering U = (U1, . . . , UK) and X = (X1, . . . XK)

as hidden variables, the EM algorithm iteratively updates the
estimate ˆ✓ as

ˆ✓ = argmax

✓
E [ln p(y, U,X|✓)] , (12)

where the expectation is computed with respect to the posterior
density p(u, x|y, ˆ✓old). The joint density obtained from our
model described in (6) factorizes into

p(y, u, x|✓) =
KY

k=1

p(yk|xk, ✓)p(xk|xk�1, uk, ✓)p(uk|✓), (13)

with

�2 ln p(yk|xk, ✓) = (yk � Cxk)
2/�2

Z + ln(2⇡�2
Z) (14)

�2 ln p(uk|✓) =
LX

`=1

�
u
[`]
k

�2
/�2

U
[`]
k

+ ln

�
2⇡�2

U
[`]
k

�
, (15)



and the decomposition

�2 ln p(xk|xk�1, uk, ✓)

/ (x
[0]
k �A0x

[0]
k�1)

TV
�1
0
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(x
[0]
k �A0x

[0]
k�1) + n0 ln�

2
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+

LX
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��x[`]
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[`]
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k

��2

�2
E`

+ n` ln�
2
E`
, (16)

where / means equality up to an additive constant independent
of xk, xk�1, uk, and ✓.

Interestingly, the maximization in (12) can be done in closed
form since it splits for each individual set of model parameters.
Putting everything together, the EM update is

�̂2
U

[`]
k

= E[(U [`]
k )

2
] , for k 2 {1, . . . ,K} (17)
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2
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i
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ˆA` = argmin

A`
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�
A`VA`A

T
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�
, (20)

for ` 2 {1, . . . , L}, with
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• ]E[X [`]

• U
[`]
• ]

T

E[(U [`]
• )

2
]

. (22)

The notation ‘•’ means that a single sum over k from 1 to K
is placed in front of the direct outer expectation sign while
replacing all signs ‘•’ by k. The cost function in (20) is
a quadratic form in A` and closed-form expressions can be
derived in particular when A` is in controllable, observable or
Jordan canonical form. If some signal shapes are known, their
respective parameters c`, A`, and b` need not be updated.

For the baseline model (` = 0), we have

�̂2
E0

=

1

n0K
tr

⇣
V �1
0

�
A0 E[X [0]

•�1(X
[0]
•�1)

T
]AT

0

�2A0 E[X [0]
•�1(X

[0]
• )

T
] + E[X [0]

• (X
[0]
• )

T
]

�⌘
. (23)

Closed-form EM updates for C and �2
Z are also available

(see [27]). Under suitable state space parameterization, C can
be fixed since b1, . . . , bL are estimated anyway. Unfortunately,
updating �2

Z often leads to undesirable results where �2
Z goes

to zero (i.e., perfect fit), which in turn makes the likelihood
go to infinity with non-sparse input variances and trivial signal
shapes, such as spikes. Hence, �2

Z is usually fixed to obtain a
desired trade-off between sparsity and data fit.

Thus, all unknown parameters in ✓ are jointly updated with
closed-form expressions. Furthermore, all quantities required
for EM can be efficiently computed using Gaussian message
passing as described in Section IV. While most parameters
can be randomly initialized, the way the input variances are
initialized may favor a signal shape over the others. It is
especially useful to favor unknown models over known ones.

· · · A
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k�1
+ +
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Xk · · ·

C

+

yk
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N (0,�2
Z)
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B
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N (0,⌃Uk)

Fig. 1. Factor graph representation of the LSSM.

IV. STABLE AND EFFICIENT MESSAGE PASSING

Using Gaussian message passing in the factor graph [28]
of Fig. 1, all quantities required for EM can be efficiently
computed. The modified Bryson-Frazier smoother [25] is a
suitable choice of message passing updates for our purposes.
In particular, it is stable while any input (co-)variance goes to
zero, which is actually expected in our algorithm. Furthermore,
no matrix inversions are needed for both the message passing
updates and the expectation computations. This allows the use
of relatively high state space orders to include many signal
shapes and/or fairly complex signal shapes.

We denote ⌃Uk = diag(�2
U

[1]
k

, . . . ,�2
U

[L]
k

). We here re-
call the modified Bryson-Frazier smoother [25] and provide
the link to the required expectation quantities for EM. The
smoother begins with a forward pass for k = 1, . . . ,K

�→mXk = A(

�→mXk�1+ (yk�1� C�→mXk�1)gk�1
�→
VXk�1C

T
) (24)

�→
VXk = B⌃UkB

T
+ VE +AFk�1

�→
VXk�1A

T (25)

gk = 1/(�2
Z + C

�→
VXkC

T
) (26)

Fk = I � gk
�→
VXkC

TC, (27)

with �→mX0 ,
�→
VX0 , and y0 initialized all zero, followed by a

backward pass for k = K, . . . , 1

˜⇠Xk = FT
k A

T
˜⇠Xk+1 � gk(yk � C�→mXk)C

T (28)
˜WXk = FT

k A
T
˜WXk+1AFk + gkC

TC, (29)

initialized with ˜WXK+1 = 0 and ˜⇠XK+1 = 0. The joint poste-
rior of Xk, Uk, and Xk�1 is Gaussian and thus characterized
by its mean and covariance matrix, which are obtained from

mXk =

�→mXk ��→
VXk

˜⇠Xk (30)
mUk = �⌃UkB

T
˜⇠Xk (31)

VXk =

�→
VXk(I � ˜WXk

�→
VXk) (32)

VUk = ⌃Uk � ⌃UkB
T
˜WXkB⌃Uk (33)

VXk�1,XT
k
= Fk�1

�→
VXk�1A

T
(I � ˜WXk

�→
VXk) (34)

VXk�1,UT
k
= �Fk�1

�→
VXk�1A

T
˜WXkB⌃Uk (35)

VXk,UT
k
= (I ��→

VXk
˜WXk)B⌃Uk , (36)
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ŝ
[2]
k

Fig. 2. Synthetic example of signal separation. For each signal component
ŝ[`], ` 2 {0, . . . , 4}, the average squared error is below 10�5.

from which we deduce E[XkX
T
k ], E[UkU

T
k ], E[Xk�1U

T
k ], and

E[XkU
T
k ]. Note that at each EM iteration, the log-likelihood

is non-decreasing and can be computed iteratively as

Lk = Lk�1�
(yk � C�→mXk)

2

�2
Z + C

�→
VXkC

T
�ln

�
2⇡(�2

Z + C
�→
VXkC

T
)

�
, (37)

for k = 1, . . . ,K, with L0 = 0 and Lk = 2 ln p(y1, . . . , yk|✓).
Finally, the `th signal component estimate is given by

ŝ
[`]
k = Cm

[`]
Xk

, k 2 {1, . . . ,K}. (38)

V. EXPERIMENTAL RESULTS

We first illustrate our algorithm with a synthetic example.
We generate a signal as in the upper plot of Fig. 2 which
superimposes a baseline generated with filtered white Gaussian
noise, two different decaying sinusoids, spikes, an offset, and
white Gaussian noise of variance 10

�2. For our algorithm, we
use a LSSM with L = 4 where

• n0 = 2 with (c0, A0, V0) that models a cubic spline
smoothing [22]

• n1 = 2 with c1 = [1, 0] and unknown A1 = ⇢1R(!1)

and b1 2 R2 to model a decaying sinusoid
• n2 = 2 with c2 = [1, 0] and unknown A2 = ⇢2R(!2)

and b2 2 R2 to model another decaying sinusoid
• n3 = 1 with c3 = b3 = 1 and A3 = 0 to model spikes
• n4 = 1 with c4 = A4 = b4 = 1 to model offsets

(where R(!) denotes a 2⇥ 2 rotation matrix of angle !).
While A1, b1, A2 and b2 are randomly initialized, the input

variances are initialized as �2
E`

= 10

�5, �2
U

[1]
k

= �2
U

[2]
k

= 10

�6,

and �2
U

[3]
k

= �2
U

[4]
k

= 10

�7 in order to favor the unknown mod-
els over the known (spike and offset) ones. The noise variance
�2
Z is fixed to 10

�1. As shown in Fig. 2, our algorithm recovers
the individual input positions of each model (indicated in the
second plot by the non-zero values of �̂

U
[`]
k

) and outputs a good
estimation for both the individual signal shape components ŝ[1]
and ŝ[2] and the baseline ŝ[0]. If more unknown shapes (i.e.,
L > 4) than actually present are specified, unnecessary signal
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Fig. 3. Fetal ECG separation. 1) raw ECG. 1,2,3) estimated signal components
from our algorithm. 4,5) estimated signal components from K-SVD.

shapes are automatically disregarded by the algorithm under
adequate initialization of parameters.

In Fig. 3, we display the result of our algorithm on a raw
abdominal ECG recording of a pregnant woman from the
DaISy dataset [29]. In this recording, the fetal ECG signal is
about eight times weaker than the maternal ECG, which makes
its detection and estimation challenging. For our algorithm,
we use L = 2 models consisting of linear combinations of
8 and 3 damped sinusoids. The baseline model still emulates
cubic spline smoothing. The weak fetal ECG signal (plotted in
purple) is remarkably well estimated and separated from the
strong maternal ECG signal (plotted in green), as indicated in
the subplots 2 & 3 of Fig. 3.

We also compare our algorithm with an adaptation of the K-
SVD algorithm [17] that finds L sparse vectors w(`) 2 RK and
dictionaries H` 2 RK⇥K consisting of time-shifted versions of
a single vector, while minimizing ky�

PL
`=1 H`w

(`)k subject
to, w(`) � 0, kw(`)k1  T`, for some fixed T` > 0. The results,
for L = 2, are shown in subplots 4 & 5 of Fig. 3. While the
maternal ECG signal is well estimated, the fetal ECG signal
is poorly separated and estimated. Indeed, K-SVD algorithm
does not allow much variations between occurrences of a
signal shape. Thus, despite a good estimation of the maternal
ECG signal, the remaining errors are still large enough to spoil
the estimation and separation of the weak fetal ECG (plotted
in purple in subplots 4 & 5 of Fig. 3). Our method is more
robust with this respect since small variations of a pulse shape
are compensated by state noise terms (via the variances �2

E`
).
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Fig. 4. Estimated maternal ECG signal (green line) using the proposed
algorithm (upper plot) and K-SVD (lower plot).

We also apply both methods on an ECG recording where the
fetal ECG signal is about two times weaker than the maternal
ECG signal. In this scenario, both algorithms successfully
estimate and separate the two signal components (not reported
here). However, as shown in Fig. 4, the maternal ECG signal
is estimated in different ways for each method. Namely, our
algorithm includes the P and T waves of the maternal ECG
in the baseline component, while K-SVD algorithm neglects
the T waves and merges the P waves with the QRS complex.
Since the time delays between the P wave, QRS complex, and
T wave vary at each heart beat, it is actually worthwhile to
include the T and P waves in the baseline component, which
in turn allows a more robust estimation of the other signals.

VI. CONCLUSION

We have advocated a state space approach to decompose a
single-channel discrete-time signal into a wandering baseline
and signal components consisting of repetitive (unknown or
known) signal shapes. The originality of our method resides
in the combination of exploiting the state space model ca-
pabilities, sparsifying via NUV priors, and learning with an
efficient EM algorithm based on a Gaussian message passing
algorithm without any matrix inversion. Experimental results
have emphasized on robustness and differences compared
to a standard algorithm. Finally, the obtained sparse multi-
channel representation suggests the use of further hierarchical
processing to extract additional structural information such as
synchrony of signal shapes.
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