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Abstract—The paper addresses the problem of fitting, at any

given time, a parameterized signal generated by an autonomous

linear state space model (LSSM) to discrete-time observations.

When the cost function is the squared error, the fitting can

be accomplished based on efficient recursions. In this paper,

the squared error cost is generalized to more advanced cost

functions while preserving recursive computations: first, the

standard sample-wise squared error is augmented with a sample-

dependent polynomial error; second, the sample-wise errors are

localized by a window function that is itself described by an

autonomous LSSM. It is further demonstrated how such a signal

estimation can be extended to handle unknown additive and/or

multiplicative interference. All these results rely on two facts:

first, the correlation function between a given discrete-time signal

and a LSSM signal can be computed by efficient recursions;

second, the set of LSSM signals is a ring.

I. INTRODUCTION

Fitting a parameterized signal to discrete-time measure-
ments is a very classical problem. About two hundred years
ago, Gauss invented both the least-squares method and its
recursive version [1], and successfully applied it to predict the
orbit of the newly discovered asteroid Ceres. Recursive least
squares (which may be considered as a special case of Kalman
filtering [2], [3]), continues to be a key algorithm in digital
signal processing. However, the assumptions of linearity and
of quadratic costs (or, equivalently, Gaussian noise) are not
suitable for some applications, which has motivated nonlinear
filters such as the extended Kalman filter (EKF), the unscented
Kalman filter (UKF) [4], particle filters, and exact recursive
filters [5], [6].

In this paper, we focus on recursive signal estimation
rather than filtering. We consider parameterized signals that
are generated by an autonomous linear state space model
(LSSM) with unknown initial state. Such LSSM signals are
highly versatile for modeling, and are of great practical use
by virtue of two charming properties (see Sec. II): first, the
correlation function between any such signal and any given
discrete-time signal can be computed by efficient recursions;
second, the element-wise multiplication of two LSSM signals
is again a LSSM signal. These two properties are simple but
yet extremely valuable. Indeed, in Sec. III, we introduce a
general cost function that can still be recursively computed.
This cost is obtained by replacing the standard sample-wise
squared error by any sample-dependent polynomial cost and

by weighting sample-wise errors with a LSSM window. In
Sec. IV, we again exploit those two properties to handle signal
estimation in the presence of an unknown additive and/or mul-
tiplicative interference that can be well modeled with a LSSM.
Finally, in Sec. V, we present two illustrative applications of
recursive signal estimation beyond least squares.

II. DEFINITION AND PROPERTIES OF LSSM SIGNALS

Definition 1 (LSSM signal): A discrete-time signal s
j

2
R, j 2 Z, is a LSSM signal (i.e., generated by a two-sided
autonomous LSSM) if and only if there exists C

`

2 R1⇥n` ,
A

`

2 Rn`⇥n` , x
`

2 Rn` , and Cr 2 R1⇥nr , Ar 2 Rnr⇥nr ,
xr 2 Rnr , for some, n

`

, nr 2 N such that

s
j

=

(
C

`

A
|j|
`

x
`

for j  0

CrA
j

rxr for j > 0.
(1)

The changing point of this two-sided model is defined to be
at time j = 0. However, when performing signal estimation,
this is not a restriction since such LSSM signal will be shifted
by a time of interest. The signal model can also be made
left-sided or right-sided by setting xr = 0 or x

`

= 0. The
set of LSSM signals, which is a vector space, consists of
linear combinations of (two-sided) exponentials, polynomials,
sinusoids, finite-length signals, and products of those.

The LSSM parameters {C,A, x} have to be understood as
{C

`

, A
`

, x
`

}[ {Cr , Ar , xr}. In the following, the parameters
{C

`

, A
`

, Cr , Ar } are assumed to be known while the states
x = {x

`

, xr} are to be estimated. Thus, a LSSM signal s
j

(x),
j 2 Z, as in (1) is a function of x.

A. Inner Product with LSSM Signals

Given parameters {C,A} and any discrete-time signal y =

(y1, . . . , yK) 2 RK of duration K 2 N, we define the quantity

⇠
k

(y, C,A) =

"�→
⇠
k

(y, C
`

, A
`

)←�
⇠
k

(y, Cr , Ar )

#
2 Rn, (2)

with n = n
`

+ nr and

�→
⇠
k

(y, C
`

, A
`

) =

kX

i=1

(AT
`

)

k�iCT
`

y
i

2 Rn` (3)

←�
⇠
k

(y, Cr , Ar ) =

KX

i=k+1

(AT
r )

i�kCT
r yi 2 Rnr , (4)
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for k 2 {1, . . . ,K} and ⇠
k

(y, C,A) = 0, otherwise. Note that
⇠
k

(y, C,A) is a linear function of y and can be interpreted as
the output of n linear filters.

The quantity (2) is efficiently computed for all k 2
{1, . . . ,K} using the forward recursion

�→
⇠
k

(y, C
`

, A
`

) = AT
`

�→
⇠
k�1(y, C`

, A
`

) + CT
`

y
k

, (5)

initialized with
�→
⇠ 0(y, C`

, A
`

) = 0 and the backward recursion
←�
⇠
k

(y, Cr , Ar ) = AT
r

�←�
⇠
k+1(y, Cr , Ar ) + CT

r yk+1

�
, (6)

initialized with
←�
⇠
K

(y, Cr , Ar ) = 0.
Proposition 1 (Inner Product with a LSSM signal): The

inner product between y and a LSSM signal s(x), for any
x, as in (1) shifted by a time k and denoted by s•�k

(x) is

hy, s•�k

(x)i = xT⇠
k

(y, C,A), (7)

with the convention that xT
= [xT

`

, xT
r ].

Proof of Proposition 1: This proposition follows from

hy, s•�k

(x)i =
KX

i=1

y
i

s
i�k

(x) (8)

=

kX

i=1

C
`

Ak�i

`

x
`

y
i

+

KX

i=k+1

CrA
i�k

r xryi (9)

= xT
`

�→
⇠
k

(y, C
`

, A
`

) + xT
r

←�
⇠
k

(y, Cr , Ar ) (10)
= xT⇠

k

(y, C,A). (11)

Proposition 1 has several important consequences. First,
computing the correlation function between a signal of length
K and a LSSM signal s(x) has a complexity of O(Kn2

),
with n = max(n

`

, nr). Secondly, the inner product between
y and s•�k

(x) can be expressed as a standard inner product
in Rn between x and ⇠

k

(y, C,A). Finally, since ⇠
k

(y, C,A) is
independent of x, the computational effort to obtain the inner
product between y and s•�k

(x) for any x, is of O(n) only,
after having computed ⇠

k

(y, C,A).

B. Element-wise Product of LSSM signals

Proposition 2 (Product of LSSM signals): Let s(1)
j

and s
(2)
j

,
j 2 Z, be two LSSM signals with respective parameters
{C1, A1, x1} and {C2, A2, x2}. Then, s(1)

j

·s(2)
j

, j 2 Z, is also
a LSSM signal with parameters {C1⌦C2, A1⌦A2, x1⌦x2}.

To keep the notation concise, C1⌦C2 (and analogously for
A1 ⌦ A2 and x1 ⌦ x2) means that the Kronecker product is
applied independently for the left-sided part (C

`,1⌦C
`,2) and

for the right-sided part (Cr,1 ⌦ Cr,2). We use this convention
all along.

Proof of Proposition 2: For j > 0, we have

s
(1)
j

· s(2)
j

= (Cr,1A
j

r,1xr,1)(Cr,2A
j

r,2xr,2) (12)

= (Cr,1A
j

r,1xr,1)⌦ (Cr,2A
j

r,2xr,2) (13)
= (Cr,1 ⌦ Cr,2)(Ar,1 ⌦Ar,2)

j

(xr,1 ⌦ xr,2). (14)

An analog relation holds for j  0 with the left-sided
parameters, which then concludes the proof.

Along with the fact that the constant signal 1 is a LSSM
signal (generated with C

`

= A
`

= x
`

= Cr = Ar = xr = 1

and denoted by C = A = x = 1), this proposition implies
that the set of LSSM signals is a ring. This property will be
extremely useful in this paper.

III. RECURSIVE SIGNAL ESTIMATION BEYOND LEAST
SQUARES

Let y = (y1, . . . , yK) 2 RK be discrete-time observations
of duration K 2 N. At any given time index k 2 {1, . . . ,K},
we wish to fit a LSSM signal s(x) with parameters {C,A, x}
and unknown x to the observations. It is well-known that the
squared error function

J
k

(x) =

KX

i=1

�
y
i

� s
i�k

(x)
�2 (15)

can be computed efficiently with recursions as in Kalman
filtering. Indeed, using the function in (2) and Propositions 1
& 2, we have

J
k

(x) = ⇠
k

(y2,1,1)� 2xT⇠
k

(y, C,A)

+(x⌦ x)T⇠
k

(y0, C ⌦ C,A⌦A), (16)

where yp denotes the signal y raised element-wise to the power
of p 2 N. We now generalize the squared cost in (15) in two
different ways while preserving recursive cost computations,
and thus, computational efficiency.

A. Time-Dependent Polynomial Cost

Assume that each observation y
i

, i 2 {1, . . . ,K}, comes
with its own polynomial cost P

i

of maximum degree d 2 N
and coefficients p

(i)
j

2 R, j 2 {0, . . . , d}. Suppose we wish
to perform signal estimation at any time k by minimizing the
cost function

J
k

(x) =

KX

i=1

P
i

�
y
i

� s
i�k

(x)
�
. (17)

The polynomials P
i

will normally be chosen such that P
i

(u) �
0, for all u 2 R, but this is actually not a restriction.

An important special case of (17) consists of polynomials
P
i

independent of i (i.e., P
i

= P , for all i), which leads to

J
k

(x) =

KX

i=1

P
�
y
i

� s
i�k

(x)
�
. (18)

When P (u) = u2, the cost (18) becomes the one of (15).
It turns out that the cost function (17) can be recursively

and efficiently computed thanks to the relation

J
k

(x) =

dX

q=0

(�1)q(⌦qx)T⇠
k

(ỹ(q),⌦qC,⌦qA), (19)

with ỹ(q) 2 RK such that

ỹ
(q)
i

=

dX

j=q

✓
j

q

◆
p
(i)
j

yj�q

i

, (20)



for i 2 {1, . . . ,K}, q 2 {0, . . . , d}, and with

⌦qC = C ⌦ · · ·⌦ C| {z }
q times

, (21)

for q � 1 and ⌦0C = 1. The proof of (19) follows from the
proof of (23), which is given in the next section. In particular,
(19) coincides with (16) when P

i

(u) = u2, for all i.

B. LSSM-Windowed and Time-Dependent Polynomial Cost

Often, we further want to limit the horizon of the actual sig-
nal estimation. For that purpose, we localize the cost function
(17) using a LSSM window w

j

, j 2 Z, centered at time index
k. Thus, given the polynomial costs P

i

, i 2 {1, . . . ,K}, of
maximum degree d 2 N, we wish to perform signal estimation
at any time k by minimizing the windowed cost function

J
k

(x) =

KX

i=1

w
i�k

P
i

�
y
i

� s
i�k

(x)
�
, (22)

where w
j

, j 2 Z, is a LSSM signal with fixed parameters
{Cw , Aw , xw}. For instance, when Cw = xw = 1 and A

`,w =

Ar,w = � for some � 2 (0, 1), the cost J
k

(x) is computed on a
symmetric exponentially-decaying window centered at time k.
Another example is a finite-length window, which is obtained
by choosing A

`,w and Ar,w to be nilpotent. Note that (17) is a
special case of (22) with Cw = Aw = xw = 1 (i.e., a constant
infinite-length window).

The cost (22) is recursively and efficiently computed thanks
to the relation

J
k

(x) =

dX

q=0

(�1)q((⌦qx)⌦ xw)
T⇠

(q)
k

, (23)

with, for q 2 {0, . . . , d},

⇠
(q)
k

= ⇠
k

(ỹ(q), (⌦qC)⌦ Cw , (⌦qA)⌦Aw ), (24)

where ỹ(q) is defined in (20). The quantity ⇠
(q)
k

is a linear
function of ỹ(q) but no longer of y. A graphical representation
of formula (23) is given in Fig. 1. This formula follows from

J
k

(x) =

KX

i=1

w
i�k

dX

j=0

p
(i)
j

�
y
i

� s
i�k

(x)
�
j (25)

=

dX

j=0

jX

q=0

✓
j

q

◆
(�1)q

KX

i=1

p
(i)
j

yj�q

i

w
i�k

(s
i�k

(x))q (26)

=

dX

q=0

(�1)q
KX

i=1

dX

j=q

✓
j

q

◆
p
(i)
j

yj�q

i

w
i�k

(s
i�k

(x))q (27)

=

dX

q=0

(�1)q
KX

i=1

ỹ
(q)
i

w
i�k

(s
i�k

(x))q, (28)

from which we deduce (23) using Proposition 1 since for any
q 2 {0, . . . , d}, w

i�k

(s
i�k

(x))q , i 2 Z, is a LSSM signal
shifted by a time k and with LSSM parameters {(⌦qC) ⌦
Cw , (⌦qA)⌦Aw , (⌦qx)⌦ xw} according to Proposition 2.

The formula (23) also proves that {⇠(q)
k

: q 2 {0, . . . , d}} is
a finite-dimensional sufficient statistic for x. The complexity of
computing J

k

, for all k 2 {1, . . . ,K}, is only of O(Kn2dn2
w)

(with n = max(n
`

, nr) and nw = max(n
`,w, nr,w)), which

basically corresponds to the complexity of computing ⇠
(d)
k

.
In particular, whether the polynomials P

i

are time-dependent
or not, the computational complexity remains of the same
order. Note also the squared dependency of the complexity
with respect to the order of the LSSM window.

The cost function (23) is a multivariate polynomial in x.
Thus, its minimization can be done using exact algebraic
methods such as Gröbner bases or using a relaxation method
such as a sum of square formulation solved by semidefinite
programming [7].

IV. SIGNAL ESTIMATION IN THE PRESENCE OF
INTERFERENCES

In several practical applications, signals of interest are
altered by some interference signal, which needs to be taken
into consideration in the signal estimation problem. For that
purpose, in addition to modeling a signal of interest with a
LSSM with parameters {C,A, x} with unknown x, we also
model interferences with a LSSM signal g

j

(xg), j 2 Z, with
parameters {Cg , Ag , xg} with unknown xg. In the following,
we propose three cost functions J

k

(x, xg) based on (22),
which handle interference signals in different ways. Actually,
except computational complexity, nothing prevents from com-
bining these three ways of dealing with interferences.

A. Additive Interference

When the interference signal is additive, signal estimation
at any time k can be done by minimizing the cost function

J
k

(x, xg) =

KX

i=1

w
i�k

P
i

�
y
i

� (g
i�k

(xg) + s
i�k

(x))
�
. (29)

Since g
j

(xg) + s
j

(x), j 2 Z, is also a LSSM signal obtained
by stacking (in a suitable manner) the LSSM parameters
{C,A, x} with {Cg , Ag , xg}, the relation (23) still applies
to compute J

k

(x, xg) by replacing the parameters C and A in
(24) with the parameters of the stacked model.

B. Multiplicative Interference

In case of multiplicative interference, signal estimation at
any time k can be done by minimizing the cost function

J
k

(x, xg) =

KX

i=1

w
i�k

P
i

�
y
i

� g
i�k

(xg)si�k

(x)
�
. (30)

Since g
j

(xg)sj(x), j 2 Z, is also a LSSM signal (according to
Proposition 2) with LSSM parameters {C ⌦Cg , A⌦Ag , x⌦
xg}, the relation (23) still applies to compute J

k

(x, xg) with
the substitution C  C⌦Cg , A A⌦Ag , and x x⌦xg.
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Fig. 1. Graphical representation of the cost computation according to (23) and using (20), (24), and (2).

C. Inverse Multiplicative Interference

In some cases, a multiplicative interference is better mod-
eled as the (element-wise) inverse of a LSSM signal (i.e.,
1/g

j

(xg), j 2 Z) rather than a LSSM signal directly. Un-
fortunately, the element-wise inverse of a LSSM signal is not
in general a LSSM signal. However, instead of multiplying
the signal of interest with the interference signal in the cost
function, an alternative is to multiply the observations with
the element-wise inverse interference. Thus, signal estimation
at any time k can be done by minimizing the cost function

J
k

(x, xg) =

KX

i=1

w
i�k

P
i

�
g
i�k

(xg)yi � s
i�k

(x)
�
. (31)

Again, J
k

(x, xg) can still be recursively computed. Indeed,
using similar expansions as in (25) and (26), we have

J
k

(x) =

dX

j=0

jX

q=0

(�1)q

KX

i=1

✓
j

q

◆
p
(i)
j

yj�q

i

(g
i�k

(xg))
j�qw

i�k

(s
i�k

(x))q (32)

=

dX

j=0

jX

q=0

(�1)q
�
x̃(q,j)

�T
⇠
k

�
ỹ(q,j), ˜C(q,j), ˜A(q,j)

�
, (33)

with ỹ(q,j) 2 RK and such that for (q, j) 2 {0, . . . , d}2, q  j,

ỹ
(q,j)
i

=

✓
j

q

◆
p
(i)
j

yj�q

i

, i 2 {1, . . . ,K} (34)

˜C(q,j)
= (⌦qC)⌦ (⌦j�qCg )⌦ Cw (35)

˜A(q,j)
= (⌦qA)⌦ (⌦j�qAg )⌦Aw (36)

x̃(q,j)
= (⌦qx)⌦ (⌦j�qxg)⌦ xw. (37)

Once more, using Proposition 2, those parameters follow from
the fact that (g

i�k

(xg))
j�qw

i�k

(s
i�k

(x))q , i 2 Z, (cf. (32))
is a LSSM signal shifted by a time k and with parameters
{ ˜C(q,j), ˜A(q,j), x̃(q,j)}.

V. EXPERIMENTAL RESULTS

A. Detection of a Modulated Signal

We want to detect pulses of sinusoidal shape of frequency
⌦ 2 R+ in an amplitude-modulated carrier signal of frequency
⌦

g

2 R+ and buried with additive white Gaussian noise. A
typical observed signal is displayed in Fig. 2, upper plot.

�1

0

1 y

0

1 k w•�k

g•�k(x̂g)

g•�k(x̂g)s•�k(x̂)

0 250 500 750

0

0.5

Time index

LLR

Fig. 2. Synthetic example of amplitude-modulated pulse detection.

For ! 2 R, we denote

R(!) =


cos! � sin!
sin! cos!

�
2 R2⇥2. (38)

The carrier signal is seen as an interference signal g(xg)

with LSSM parameters Cr,g = C
`,g

= [1, 0], Ar,g =

A�1
`,g

= R(⌦

g

), and unknown xg 2 R2 ⇥ R2. The signal
of interest s(x), consisting of pulses of sinusoidal shape, is
generated with the LSSM parameters Cr = C

`

= [1, 0],
Ar = A�1

`

= R(⌦), and unknown x 2 R2 ⇥ R2. For all
time indices k, we recursively compute a cost J

k

(x, xg) as in
(30) using P

i

(u) = u2, for all i (i.e., standard squared error),
but with a two-sided exponential window with parameters
Cw = xw = 1 and A

`,w = Ar,w = � for some � 2 (0, 1).
In Fig. 2, we illustrate the results of our signal estimation
method. In the lower plot, we display the log-likelihood ratio

LLR

k

= �1

2

ln

0

@
min

x,xg

J
k

(x, xg)

J
k

(x = 0, xg = 0)

1

A , (39)

which indicates how likely the presence of a signal of interest
is. In the middle part of Fig. 2, we plot the estimated signal
obtained at index k = 350 where LLR

k

is maximum. Note
the actual separation of the carrier signal from the signal of
interest.
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Fig. 3. Multi-channel esophageal ECG signal (blue lines), catheter displace-
ment estimate (green dots) and estimated LSSM signal (black dashed line).

B. Estimation of a Catheter Movement

Unlike surface electrocardiogram (ECG) recordings,
esophageal ECG recordings, obtained using electrodes placed
in the esophagus, are not commonly used. However, since the
esophagus is much closer to the heart than the chest surface,
esophageal ECG recordings contain valuable information
provided that we can actually extract it. In such recordings
the catheter containing the electrodes typically moves due to,
among others, the patient’s breathing. Given a M -channel
esophageal ECG recording, we want to estimate the relative
vertical movement of the catheter in the esophagus. The key
idea to exploit is that when the catheter slowly moves, the
signal shape produced by a heart beat in a given channel is
quite similar to the signal shape produced by the previous
heart beat in another channel [8].

We consider a catheter that holds M + 1 ring-shaped
electrodes which are located at distances d0 < d1 < . . . < d

M

from the catheter tip. For m 2 {1, . . . ,M}, let u
(m)
n

2 R,
n 2 {1, . . . , N} be the voltage measured between electrodes
m and m � 1. Within these N samples, we observe K + 1

heart beats with corresponding R peaks at time indices q
k

2 N
and corresponding unknown catheter positions r

qk 2 R,
k 2 {0, . . . ,K}. The first beat (i.e., for k = 0) is considered as
reference beat with r

q0 = 0. Each beat k effectively produces
signal shapes in the interval {q

k

+a, . . . , q
k

+ b}, (a, b) 2 Z2,
a < b. In order to compare signal shapes produced by the ith

heart beat with the ones produced by the reference beat, we
define the cost function

P
i

(r) =

bX

n=a

Z
dM

d0

('
qi+n

(z � r)� '
q0+n

(z))
2
dz, (40)

which depends on the displacement r and where '
n

(z),
z 2 [d0, dM ], is a real polynomial of degree Q 2 N, which
interpolates the voltage measurements (u(1)

n

, . . . , u
(M)
n

) across
channels at time index n. It follows that P

i

(r) (plotted in
Fig. 4) is also a polynomial in r of degree 2Q+ 1.
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Fig. 4. Selection of polynomials Pi(r) for few indices i.

Then, we model the displacement of the catheter with a
LSSM signal s(x) with parameters C and A. Finally, we
perform signal estimation by minimizing the cost function

J
k

(x) =

KX

i=1

w
i�k

P
i

(s
i�k

(x)), (41)

where w
i�k

corresponds to an exponential window, as an
example of (22). Fig. 3 shows a snipped of a multi-channel
esophageal ECG signal (M = 9) and the estimated catheter
position. For this example, we chose Q = 5, Cr = C

`

= [1, 0],
and Ar = A�1

`

= R(!). Note that the catheter position shows
a periodic movement, revealing the subject’s breathing activity.

VI. CONCLUSION

We have introduced a general cost function, which in-
cludes sample-dependent polynomial costs along with window
weights generated by a LSSM, to fit a parameterized LSSM
signal to discrete-time measurements. We have shown how
this cost function can be recursively computed and can han-
dle unknown additive and/or multiplicative interferences in a
signal estimation problem. The two properties we used are
that the correlation function between any given discrete-time
signal and a LSSM signal is recursively computed and the
set of LSSM signals is a ring. We have also presented two
applications, which, however, hardly suffice to illustrate the
versatility of the proposed approach.
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[6] V. Beneš, “Exact finite-dimensional filters for certain diffusions with

nonlinear drift,” Stochastics: An International Journal of Probability and

Stochastic Processes, vol. 5, no. 1-2, pp. 65–92, 1981.
[7] P. A. Parrilo and B. Sturmfels, “Minimizing polynomial functions,”

Algorithmic and quantitative real algebraic geometry, DIMACS Series

in Discrete Mathematics and Theoretical Computer Science, vol. 60, pp.
83–99, 2003.

[8] D. Bruegger, “3D Reconstruction and Simulation of Heart Potentials in
the Esophagus,” Master’s thesis, Bern University of Applied Sciences,
Biel, Switzerland, 2016.


