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ABSTRACT
We introduce a model-based approach for computation-
ally efficient signal detection and discrimination, which is
relevant for biological signals. Due to its low computa-
tional complexity and low memory need, this approach is
well-suited for low power designs, as required for medi-
cal devices and implants. We use linear state space mod-
els to gain recursive, efficient computation rules and obtain
the model parameters by minimizing the squared error on
discrete-time observations. Furthermore we combine mul-
tiple models of different time-scales to match superposi-
tions of signals of variable length. To give immediate ac-
cess to our method, we highlight the use in several practical
examples on standard and on esophageal ECG signals. This
method was adapted and improved as part of a research and
development project for medical devices.
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1 Introduction

For an increasing number of wearable and implantable
medical devices, efficient and reliable signal processing is
a key element. Since space and energy are a highly limit-
ing design factors in such devices, sampling schemes and
efficient signal processing algorithms with low power con-
sumption are required.

Biological signals are essentially of finite duration
with a well-defined shape in the time domain and a variety
of time scales. Well known examples are ECG (electro-
cardiogram), EMG (electromyogram), ENG (electroneu-
rogram), EEG (electroencephalogram), and many others.
When processing those signals, shape preservation is a
fundamental aspect. Additionally, biological signals of-
ten contain a baseline due to physical interferences, which
needs to be estimated and separated from the signal of in-
terest. Consequently, many signal processing tasks in the
field of biology consist of signal detection, separation, and
discrimination.

The most often used approaches for those tasks are fi-
nite (FIR) or infinite impulse response (IIR) filters. FIR fil-

ters are versatile but computationally cumbersome and not
flexible enough to deal with different time scales. On the
other hand, IIR filters are efficiently implemented but hard
to tune for advanced specifications. Furthermore, IIR filters
are not shape preserving if not used in a forward-backward
processing mode, which might be complicated in real time
applications. Another popular method is multi-resolution
analysis, including wavelets [1], where the selection of an
appropriate wavelet is often hard but crucial. Model based
approaches are also very common for those signal process-
ing tasks. The idea is to fit a model to the observed signal
by minimizing the squared error (L2 norm). Those methods
are flexible for performing signal detection, approximation,
and separation. For example spline models [2, 3] are com-
monly used for signal interpolation and approximation.

Such model based approaches usually preserve the
signal shape. Finding a good signal model is often pos-
sible, but the error computation and minimization might be
computationally intense. However, the use of state space
models, which also includes spline models [4, 3], leads
to efficient and recursive error computation [5, 6]. Sig-
nal estimation with state space models are closely linked to
Kalman filters [7, 8] and share the same recursions. Fur-
thermore, the cost is a quadratic form and, thus, a con-
strained minimization of the cost is either done in closed
form or performed with standard iterative algorithms. State
space modeling is well established [9, 10, 11], and offers
many flexibilities which are often not exploited or only
vaguely stated.

In this paper, we use model based LTI (Linear Time-
Invariant) state space filters for signal detection and dis-
crimination in practical applications. We locally fit linear
state space models to our observations by adding a window
of exponentially decaying and/or rectangular shape. This
approach leads to introduce a cost segment for a specific
model in a particular window. Furthermore we combine
multiple such models of different time scales to match su-
perpositions of signals of variable length, leading to a com-
posite cost consisting of several cost segments. As we use
models based on state space systems and choose our win-
dows carefully, we obtain a versatile method with efficient
recursive computation rules.

To give an immediate access to our method, we illus-



trate our approach with three practical examples:

1. Esophageal ECG Wave Detection and Discrimina-
tion - Detection and discrimination of atrial (A)
and ventricular (V) waves of variable scale in an
esophageal ECG signal, ready for online or offline ap-
plication (Fig. 3).

2. Esophageal ECG Wave Detection and Discrimina-
tion with a Baseline Signal of Different Time Scale -
Detection and discrimination of ECG waves of vari-
able scale including baseline modeling of different
time scales (Fig. 4).

3. P-Wave Discrimination in Multi-Channel ECG - De-
tection and discrimination of P-Wave in a pathologic
multi-channel surface ECG signal (Fig. 6).

Our method was adapted and improved as part of
a research and engineering project for an implantable
esophageal ECG device. Its low memory need and low
computational complexity suits for implementation on
most hardware platforms, including ASICs (Application
Specific Integrated Circuits).

2 Shape Detection and Discrimination

2.1 Signal Models Using Autonomous State Space
Representations

We recall that the scalar output sk of an autonomous (i.e.
input free), time-invariant state space system of order N is
given by

xk = Axk−1 (1)
sk = cxk (2)

with state-transition matrix A ∈ RN×N , output vector c ∈
R1×N , state vector xk ∈ RN×1. This sequence can be
equivalently written in closed form as

sk(x0) = cAkx0, k ∈ Z , (3)

parametrized by an initial state vector x0 ∈ RN×1. Such
state space system can generate a wide class of discrete-
time signals. Choosing A and c accordingly leads to output
sequences consisting of polynomial, sinusoidal, exponen-
tial shapes and products of those. For example, for gener-
ating a polynomial sequence of degree two, we can choose

A =

1 1 1
0 1 2
0 0 1

 , c = [1 0 0] (4)

and get, given the initial state x0 = [β0 β1 β2]T, the se-
quence sk(x0) = cAkx0 = β0 + β1k + β2k

2.

2.2 Error Computation Using Cost Functions

We want to compute the squared error between an input
signal yi ∈ R for i ∈ Z and a signal model si−k(x) from
(3), shifted to index k, with unknown initial state vector
x. Thereof, we introduce the cost segment on the interval
{k + a, . . . , k + b} with a, b ∈ Z ∪ {±∞}, a ≤ b as

Jb
a(k, x, θ) =

k+b∑
i=k+a

γi−k (yi − si−k(x))
2 (5)

with initial state vector x and parameter set θ = (c, γ)
consisting of the output vector c and the decaying factor
γ ∈ R+.

The selection of a, b, and γ define the windowing of
the cost segment’s sum and its localization around k. In the
special case where γ = 1 and a and b are finite, the cost seg-
ment is computed on a rectangular window of bounds k+a
and k + b. In the limit case where a → −∞ and γ > 1
(respectively, b → +∞ and 0 < γ < 1), the cost seg-
ment is computed on a left-sided (respectively, right-sided)
exponentially decaying window (cf. Table 1, last column).

By the virtue of the linear state space model, the cost
in (5) can be computed recursively. Indeed, parameterizing
the cost as

Jb
a(k, x, θ) = xTWkx− 2xTξk + κk (6)

with, using (3),

Wk =

k+b∑
i=k+a

γi−k
(
Ai−k)T cTc (Ai−k) ∈ RN×N (7)

ξk =

k+b∑
i=k+a

γi−kyi
(
Ai−k)T cT ∈ RN×1 (8)

κk =

k+b∑
i=k+a

γi−ky2i ∈ R , (9)

all the sums (7), (8) and (9) can be recursively computed,
either as forward recursions (from k to k+ 1) or as a back-
ward recursions (from k to k − 1).

In order to compute the cost for all k ∈ {1, . . . ,K},
K ∈ N, the forward recursion needs to start at k =
k′ = min (−b, 0), or the backward recursion at k = k′ =
max (K − a,K) + 1, both with initial values Wk′ = 0,
ξk′ = 0, κk′ = 0. The full recursions for either rectangular
or exponentially decaying windows are listed in Table 1.

2.3 Model Fit by Error Minimization

For many pattern detection tasks, we are interested in esti-
mating the initial state vector x at a fixed index k, by min-
imizing the cost segment Jb

a(k, x, θ), which is a quadratic



Table 1: Selection of Cost Segment Windows

Segment Recursions Boundaries (a, b)

Cost Segment Jb
a(k, x, θ) =

∑k+b
i=k+a γ

i−k (yi − si−k(x))
2, k ∈ {1, . . . ,K}

Left sided
(a=−∞, b=0, γ>1)

Wk+1 = γ−1A−TWkA
−1 + cTc (10)

ξk+1 = γ−1A−Tξk + cTyk+1 (11)
κk+1 = γ−1κk + y2k+1 (12)

0
0

1

b
0

0

1

Right sided
(a=0, b=∞, γ<1)

Wk−1 = γATWkA+ cTc (13)
ξk−1 = γATξk + cTyk−1 (14)
κk−1 = γκk + y2k−1 (15)

0
0

1

a
0

0

1

Finite support
(−∞<a≤b<∞)

Wk+1 = γ−1A−TWkA
−1 − γa−1wk+a

(
Aa−1)T cTc (Aa−1)

+γbwk+b+1

(
Ab
)T
cTcAb (16)

ξk+1 = γ−1A−Tξk − γa−1wk+a

(
Aa−1)T cTyk+a

+γbwk+b+1

(
Ab
)T
cTyk+b+1 (17)

κk+1 = γ−1κk − γa−1wk+ay
2
k+a + γbwk+b+1y

2
k+b+1 (18)

0
0

1

a b δ
0

0

1

Wk−1 = γATWkA+ γawk+a−1 (Aa)
T
cTcAa

−γb+1wk+b

(
Ab+1

)T
cTcAb+1 (19)

ξk−1 = γATξk + γawk+a−1 (Aa)
T
cTyk+a−1

−γb+1wk+b

(
Ab+1

)T
cTyk+b (20)

κk−1 = γκk + γawk+a−1y
2
k+a−1 − γb+1wk+by

2
k+b (21)

Forward Recursions (k → k+1), k′ = min (−b, 0) Š Backward Recursions (k → k−1), k′ = max (K − a,K) + 1.

Initialization Wk′ = 0, ξk′ = 0, κk′ = 0. wk ∈ {0, 1}. Set wk = 1 for k ∈ {1, . . . ,K} and wk = 0 otherwise.

minimization problem, i.e.

x̂k = argmin
x∈RN

Jb
a(k, x, θ) (22)

= argmin
x∈RN

(
xTWkx− 2xTξk + κk

)
(23)

= W−1k ξk . (24)

If we further want to restrict the allowed signal shapes, con-
straints on x can be added. For instance, linear constraints
with offset

x = Hv + h (25)

with given H ∈ RN×M , h ∈ RN×1, M ∈ N,M ≤ N and
unknown v ∈ RM×1, leads to the closed form solution

v̂k = (HTWkH)−1HT(ξk −Wkh) . (26)

This and many other alternative constrained quadratic opti-
mization problems are summarized in [12].

2.4 Pattern Detection With Likelihood Ratio

Given the interval {k + a, . . . , k + b}, we want to discrim-
inate between two classes of patterns. The first class is
characterized by a fixed output vector c1 and a linearly con-
strained initial state vector x1 = H1v1 + h1. The second
class is characterized correspondingly by c2, H2, and h2.
The discrimination is based on the error ratio

qk =
min
v2

Jb
a(k,H2v2 + h2, θ2)

min
v1

Jb
a(k,H1v1 + h1, θ1)

∈ R+ . (27)

In statistical theory, this energy ratio, up to irrelevant
constants, is actually interpreted as a likelihood ratio be-
tween two hypotheses [12]. The log-likelihood ratio (LLR)
between two models is, using (27),

LLRk = −1

2
log(qk) . (28)

We note that the local minima of the error ratio coincides
with the local maxima of the LLR. Since the error ratios are



better displayed in a log scale, we subsequently use LLR’s.
Note that if the patterns to compare only differ by their ini-
tial state vectors x1 and x2, but share a common parameter
set θ = θ1 = θ2, then the recursions coincide.

3 The Composite Cost

As we will see in the first example in Section 4.1, cost seg-
ments are useful to detect known classes of patterns buried
in noise. Nevertheless, biological signals are commonly su-
perimposed on some interferences. Luckily, interferences,
such as a wandering baseline, often have a wider time-scale
than the patterns of interest. To improve the robustness of
pattern detection, we include the interference with its own
time-scale into our model.

For this purpose, we define P ∈ N cost segments of
respective parameters θp = (cp, γp) and boundaries ap ∈
Z∪{−∞}, bp ∈ Z∪{+∞}, ap ≤ bp, p ∈ {1, . . . , P} and
define Θ = (θ1, θ2, . . . , θP ), leading to the general form
of a composite cost

J̃(k, x,Θ) =

P∑
p=1

Jbp
ap(k, x, θp) . (29)

Note that the observation vectors cp and decaying factor
γp, contained in the parameter set θp, are specific to each
cost segment, but the state-transition matrixA and the state
vector x are in common to all cost segments. This is actu-
ally not a restriction since cp can select models when using
model superposition (cf. Section 3.2).

Since each cost segment Jbp
ap(k, x, θp) has its recur-

sive computation with quantities W (p)
k , ξ

(p)
k and κ(p)k (see

Section 2.2), the composite cost J̃(k, x,Θ) is thereof ob-
tained according to (6), using the substitutes

Wk =

P∑
p=1

W
(p)
k , ξk=

P∑
p=1

ξ
(p)
k , κk=

P∑
p=1

κ
(p)
k . (30)

Furthermore, the minimization of cost segment (Sec-
tion 2.3) also applies for composite costs. Thus, the com-
posite cost (29) is still efficiently computed. In the fol-
lowing, we highlight different uses of such composite costs
with direct applications. Note that a composite cost of com-
posite costs is also a composite cost, which allows recursive
application for more flexibility.

3.1 Segment Chaining

Segment chaining refers to composite costs with non-
overlapping segments, i.e. such that in (29) bp < ap+1

for p ∈ {1, . . . , P − 1}.

3.2 Model Superposition

We consider the superposition of M ∈ N models with pa-
rameters cm, Am and x(m), and common γ and common

bounds a and b, i.e.

k+b∑
i=k+a

γi−k

(
yi −

M∑
m=1

cmA
i−k
m x(m)

)2

, (31)

which is equivalent to a composite cost consisting of a sin-
gle cost segment Jb

a(k, x, θ) with parameters

A = diag(A1, . . . , AM ), (32)
xT = [(x(1))T, · · · , (x(M))T], (33)
θ = ([c1, . . . , cM ], γ) . (34)

3.3 Multi Model, Multi Time-Scale

We here combine the ideas from Sections 3.1 & 3.2. As-
sume we have M ∈ N signal models. Each model
is described by its parameters (Am, cm, x

(m)), m ∈
{1, . . . ,M} with its own time-scale, i.e. each model is ac-
tive in some specific intervals. In order to deal with those
multiple time-scales, we rearrange the time axis into P ∈ N
non-overlapping segments, and define the assignment ma-
trix Λ ∈ {0, 1}P×M such that Λp,m = 1 indicates that
model “m” is active in segment “p”.

We denote C = diag (c1, . . . , cM ), A =
diag (A1, . . . , AM ), and xT =

[
(x(1))T · · · (x(M))T

]
.

Each cost segment is characterized by its lower and upper
bounds ap ∈ Z and bp ∈ Z, ap ≤ bp, bp < ap+1, and with
the associated factor γp. We define θp = (ΛpC, γp) with
Λp the pth row of Λ, such that all models active in segment
“p” are selected. Hence, we get a composite cost as in (29).
Note that the very left and the very right segment might be
of infinite length (a1 = −∞ or bP = +∞).

3.4 Multiple Input Channels

We have S ∈ N input channels y = [y(1), . . . , y(S)].
Each channel s is associated with its signal model of or-
der Ns ∈ N and parameters cs ∈ R1×Ns , As ∈ RNs×Ns

and x(s) ∈ RNs×1, and common γ, and common bounds
a and b, leading to the cost segment Jb

a(k, x, θs) computed
on the observation channel s with parameters

A = diag(A1, . . . , AS), (35)
xT = [(x(1))T, · · · , (x(M))T], (36)
θs = ([0, . . . , 0︸ ︷︷ ︸∑s−1

σ=1 Nσ

, cs, 0, . . . , 0︸ ︷︷ ︸∑S
σ=s+1 Nσ

], γ) . (37)

Then, the total cost, equivalent to the composite cost
J̃(k, x,Θ), is

S∑
s=1

k+b∑
i=k+a

γi−k
(
y
(s)
i − csA

i−k
s x(s)

)2
. (38)
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A

Figure 1: Graphical symbol of the cost segment J(k, x, θ)
with system matrixA, output vector c and boundaries a and
b. The top arrow represents the window (rectangular) and
the computation direction of the recursions (forward).

4 Examples

4.1 Example: ECG Wave Discrimination

This first example illustrates the ideas of pattern detection
and discrimination using a single cost segment. We fo-
cus on the detection of known and repetitive signal shapes.
While in standard ECG signals atrial waves (known as P
waves) are of weak amplitude, in esophageal electrocardio-
graphy atrial waves are of similar amplitude as the ventric-
ular waves. This results from the anatomical proximity of
the esophagus to the atria. After having identified a single
atrial or ventricular wave in the signal, it is of high inter-
est to efficiently locate all its repetitions within the signal.
As common for ECG signals, the exact amplitudes are of
minor diagnostic value and can vary due to external factors
(e.g. breathing). Thus, any amplitude scale of the shape
shall be allowed.

Problem Setup

Let y ∈ RK×1,K ∈ N be a single-channel ECG signal
and kA, kV ∈ {1, . . . ,K} the indices of the identified ref-
erence atrial (A) and ventricular (V) shapes. We want to
localize and discriminate all repetitions of these atrial and
ventricular shapes, up to an amplitude scale.

Solution

We model both shapes with a fourth order polynomial of
finite length with parameters

A =


1 1 1 1 1
0 1 2 3 4
0 0 1 3 6
0 0 0 1 4
0 0 0 0 1

 , c = [1 0 0 0 0] . (39)

With this choice, for any given initial state vector x =
[β0 β1 . . . β4]T, we have the equality sk(x) = cAkx =
β0 + β1k + β2k

2 + . . . + β4k
4. We use a single cost seg-

ment with boundaries −a = b = 50 and compute Wk, ξk
and κk for the cost segment using forward recursions (16),
(17) and (18) for all k ∈ {1, . . . ,K}. A graphical represen-
tation of this cost segment with all its relevant parameters
is given in Fig. 1.

kA kV

−1

0

1

2

3

ŷ(A)

ŷ(V )

Figure 2: Squared error minimized fit of a 4th order poly-
nomial to the reference atrial (A) and ventricular (V) ECG
waves by estimating the initial states xkA and xkV accord-
ingly. The atrial signal estimate is ŷ(A)

k = cAk−kA x̂kA and
the ventricular estimate ŷ(V )

k = cAk−kV x̂kV . The solid in-
tervals of the polynomial lines ŷ(A) and ŷ(V ) correspond to
the intervals {kA+a, . . . , kA+b} and {kV +a, . . . , kV +b}
considered in the cost function with −a = b = 50.

Let the initial state vectors x̂kA and x̂kV be the un-
constrained estimates (24) that minimize the cost segment
at reference index kA and kV , respectively. In our example,
we get

x̂TkA = [1.11 0.045 − 0.013 − 1.2×10−4 4.0×10−5]

x̂TkV = [2.15 0.008 − 0.009 1.3×10−6 1.3×10−5].

For the pattern detection and discrimination, we want to al-
low an offset and an amplitude scale (to be estimated) of the
(A) and (V) shapes. This can be encoded by constraining
the initial state vector xk = Hvk as in (25) with vk ∈ R2

and where the first component of vk is the amplitude scale
and the second component the offset. For each shape, we
have a specific H , denoted as HA and HV , and defined as

HT
A =

[
0 β

(A)
1 β

(A)
2 β

(A)
3 β

(A)
4

1 0 0 0 0

]
, (40)

where β(A)
i is the ith component of x̂kA . HV is defined

correspondingly. Note that the offset components β(A)
0 and

β
(V )
0 are not used because the shapes are superimposed

with an unknown offset. The fit to the atrial and ventric-
ular signal using the constraints HA and HV is displayed
in Fig. 2. For a robust detection of each shape, we addition-
ally need a model when there is no shape. For this case, we
use an offset model, parametrized by

HT
0 =

[
1 0 0 0 0

]
.

We define the log-likelihood ratio for the atria as

LLR(A)
k = −1

2
log

min
vA

J(k,HAvA, θ)

min
v0

J(k,H0v0, θ)
∈ R+ , (41)

and, correspondingly, LLR(V )
k for the ventricle.
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Figure 3: Atrial (A) and ventricular (V) wave pattern detection and discrimination in a esophageal ECG signal y. (Unlike in
standard ECG signals, in esophageal ECGs, atrial and ventricular signals are of similar shapes and amplitudes.) (a) Recorded
esophageal ECG signal y. The polynomial coefficients used in the pattern-defining constraints HA and HV are taken from the
index waves (*). (b) ECG signal y, superimposed by detected shapes. (c) Likelihood ratios for atrial (LLR(A)) and ventricular
(LLR(V )) patterns with detected peaks (triangles) and chosen detection threshold (dotted line).

The final decision on atrial shape (HA) or ventricular
shape (HV ) at any index k is taken by setting an appro-
priate threshold on the LLR’s and taking the one with the
highest LLR value. This threshold is the only tuning pa-
rameter. Therefore its proper selection is often easily done
manually, as in this example (see dotted line in Fig. 3c). If
artifacts create false-positive detections, the allowed range
of shape’s amplitudes (first component of vk) can addition-
ally be restricted in order to increase the detection robust-
ness. In our example we would optionally restrict the shape
amplitude to values around 1, which corresponds to the ref-
erence pulse amplitude. Fig. 3 shows a typical recording
with results.

4.2 Example: ECG Wave Discrimination Using Multi-
time-scale Baseline Estimates

This second example demonstrates the use of composite
costs by additionally estimating the baseline signal. In-
cluding the baseline into the model increases the detection
robustness on signals with large baseline intereferences or
additive noise. A baseline signal usually has a wider time-
scale than the ECG waves. Therefore, our algorithm needs
to concurrently deal with signals of different time-scales.

Problem Setup

The problem setup is equivalent to the one in Example 4.1
but with increased additive Gaussian noise on the input sig-
nal y.

Solution

We model both (A) and (V) shapes with a fourth order
polynomial of finite length with parameters (A1, c1) as
in (39). Additionally, we model the baseline with a third
order polynomial of parameters (A2, c2). To deal with
a baseline with a wide time-scale, we use a composite
cost consisting of 2 models and 4 cost segments as in
Section 3.3 with the segments (cf. Fig. 5):

segm. a b+ 1 γ c ∈ R1×9

1 −∞ −∆ 1.01 [01×5 c2]
2 −∆ 0 1.005 [c1 c2]
3 0 +∆ 0.995 [c1 c2]
4 +∆ +∞ 0.99 [01×5 c2]

Note that the baseline model is active in all segments,
while the shape model is only active in segments 2 and 3.
W

(p)
k , ξ(p)k and κ(p)k are computed in forward direction for

segment 1 and 2, and computed in backward direction for
segment 3 and 4.

Let the initial state vectors x̂kA and x̂kV be the uncon-
strained estimates (24) that minimize the composite cost at
reference index kA and kV , respectively. Since we have a
baseline model, we only allow an amplitude scale of the
shape. This can be encoded by constraining the initial state
vector xk = Hvk as in (25) with vk ∈ R5 and where the
first component of vk is the amplitude scale of the shape
and the remaining four components the coefficients of the
polynomial baseline. For each shape we have a specific H ,



−2

−1

0

1

2

3 ∗
∗

A V

(a) y

−2

−1

0

1

2

3 (b) ŷ(A)
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Figure 4: Atrial (A) and ventricular (V) wave pattern detection and discrimination with baseline estimation in a esophageal ECG
signal with increased additive Gaussian noise. (a) Recorded esophageal ECG signal y. The polynomial coefficients used in
the pattern-defining constraints HA and HV are taken from the index waves (*). (b) ECG signal y with superimposed detected
shapes and local baseline estimate (horizontal lines). (c) Likelihood ratios for atrial (LLR(A)) and ventricular (LLR(V )) patterns
with detected peaks (triangles) and chosen detection threshold (dotted line).

−∞ +∞−∆
0

c2

c1

c2

A1

A2 c2

0 0

c2

c1

+∆

Figure 5: Graphical representation of the composite cost
J̃(k, x,Θ) with two models (rows) and four segments
(columns). Upper row corresponds to shape model (1), the
lower row, to the baseline model (2). The top arrows rep-
resent the window shape (decaying or rectangular) and the
computation direction (forward or backward).

denoted as HA and HV , and defined as

HT
A =

[
x̂TkA 01×4

04×5 I4

]
(42)

with the identity matrix I4 ∈ R4×4. HV is defined corre-
spondingly. When there is no shape, only the baseline is
present, which can be expressed with

HT
0 =

[
04×5 I4

]
. (43)

We define the log-likelihood ratios LLR(A)
k and

LLR(V )
k as in (41). Finally, A and V waves are localized

and discriminated using appropriate thresholding on the
LLR’s. The threshold on the LLR is again the only tun-
ing parameter and is selected manually. Fig. 4 shows the
results. Note that, despite the additive Gaussian noise on y,
the LLR peaks in this example are sharpened and the de-
tection robustness is increased in contrast to Example 4.1.
This is the benefit of including the baseline into the model.

4.3 Example: P Wave Discrimination in Multi-
Channel ECG

This example demonstrates the use of multi-channel input
signals to enhance the robustness of detection in low signal-
to-noise regimes. The task is to detect repetitions of sim-
ilar shapes of P waves in a standard 3 lead surface ECG
signal. By contrast to many other proposed approaches for
P wave detection, our method will not need any prior QRS
wave masking. Therefore our approach is also appropriate
for any arrhythmia disorder of repetitive signal shapes (e.g.
atrioventricular dissociation, atrial flutter, etc.).

Problem Setup

Let y = [y(1), y(2), y(3)] ∈ RK×3,K ∈ N be a (patho-
logic) multi-channel ECG signal (Lead I, II, III) with two
distinct atrial triggers: sinus node (n) and an additional
atrial focus (f). Let kn, kf ∈ {1, . . . ,K} be the indices
of the two identified reference P waves. We want to local-
ize all repetitions of these distinct atrial triggers by shape
comparison in the multi-channel signal y.



0

1

2

3

∗∗

nf

(a) y

0

1

2

3

(b) ŷ(f)
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Figure 6: P wave detection and discrimination in a multi-channel surface ECG signal (Lead I, II and III). (a) Recorded surface
ECG signals y with reference P waves (*). (b) ECG signal y with superimposed detected shapes ŷ(n) and ŷ(f). (c) LLR(n) and
LLR(f) with detected peaks (triangles) and chosen detection threshold (dotted line).

Solution

For each channel we use a composite cost consisting of 2
models and 4 segments as in Example Fig. 5. For the P
wave, we use a polynomial model of fourth order with pa-
rameters (A1, c1). For the baseline, we use an offset model
with parameters A2 = [1] and c2 = [1]. The three compos-
ite costs are combined as in Section 3.4, leading to a new
composite cost with A ∈ R18×18 and c ∈ R1×18.

Let the initial state vectors x̂(s)kn
be the unconstrained

estimates (24) that minimizes the composite cost of channel
s at reference index kn and similarly for x̂(s)kf

. Since we do
not allow amplitude scale, we estimate the baseline offset
in each channel, leading to a constrained state Hnvn + hn
when there is a shape (n), andHnvn when there is no shape,
with

Hn =



05×1

1

05×1

1

05×1

1


∈ R18×1 , hn=



x
(1)
kn

0

x
(2)
kn

0

x
(3)
kn

0


∈ R18×1 .

Having no amplitude scale reduces the flexibility but in-
creases the overall discrimination robustness. Finally, we

use the likelihood ratio

LLR(n)
k = −1

2
log

min
v
J̃(k,Hnv + hn,Θ)

min
v
J̃(k,Hnv,Θ)

. (44)

We proceed equally for LLR(f)
k with the second pattern de-

fined by hf and Hf using x̂kf . The final decision on the P
wave locations is taken by appropriate thresholding on the
LLR’s. Fig. 6 shows the results. We note that the algorithm
is not restricted to detect or discriminate only two shapes
but can handle several shapes.

5 Conclusion

We have proposed computationally efficient methods for
signal detection, separation, and discrimination, based on
state space models. We have shown how to deal with pat-
terns superimposed with interference signals of variable
time scales, such as baseline signals. The proposed meth-
ods were evaluated within a research project on a diagnos-
tic esophageal ECG device, and are internally widely used
on data sets obtained from the associated clinical trials in
human cardiology. We processed a large amount of ECG
and other biological signal recordings. Once getting used
to these methods, the development of fast and efficient sig-
nal processing solutions is straightforward, even for rapid
algorithm prototyping and experimental analysis. These fil-
ter methods are complement to the standard IIR and FIR



filters, but are also a substitute since our LTI state space
methods are a generalization of IIR and FIR filters.

We will continue to unify our ideas to provide a
versatile framework, including interpolation methods and
methods to dynamically deal with signals of variable time-
scales. We also work towards profound benchmarking of
our method and comparisons with known methods from
literature, rating computational complexity and detection
performance. In addition, we will provide validated practi-
cal applications implemented on dedicated hardware in the
field of cardiology, based on the illustrative examples given
in this work.
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