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Abstract—A noncoherent multipath fading channel is consid-
ered, where neither the transmitter nor the receiver is cognizant
of the realization of the path gains, but both are cognizant of their
statistics. It is shown that if the delay spread is large in the sense
that the variances of the path gains decay exponentially or slower,
then capacity is bounded in the signal-to-noise ratio (SNR). For
such channels, capacity does not tend to infinity as the SNR tends
to infinity. In contrast, if the variances of the path gains decay
faster than exponentially, then capacity is unbounded in the SNR.
It is further demonstrated that if the number of paths is finite,
then at high SNR capacity grows double-logarithmically with
the SNR, and the capacity pre-loglog—defined as the limiting
ratio of capacity to loglog(SNR) as the SNR tends to infinity—is 1
irrespective of the number of paths. The results demonstrate that
at high SNR multipath fading channels with an infinite number of
paths cannot be approximated by multipath fading channels with
only a finite number of paths. The number of paths that are needed
to approximate a multipath fading channel typically depends on
the SNR and may grow to infinity as the SNR tends to infinity.

Index Terms—Channel capacity, channels with memory, fading
channels, frequency-selective fading, high signal-to-noise ratio,
multipath, noncoherent.

I. INTRODUCTION

W E STUDY the capacity of discrete-time multipath
fading channels. In such channels the transmitted

signal propagates along a multitude of paths, and the gains
and delays of these paths vary over time. In general, the path
delays differ from each other, and the receiver thus observes
a weighted sum of delayed replicas of the transmitted signal,
where the weights are random. We shall slightly abuse nomen-
clature and refer to each summand in the received signal as a
path, and to the corresponding weight as its path gain, even if
it is in fact composed of a multitude of paths. We consider a
noncoherent channel model, where transmitter and receiver are
cognizant of the statistics of the path gains, but are ignorant of
their realization.

Multipath fading channels arise in wireless communications,
where obstacles in the surroundings reflect the transmitted
signal and cause it to propagate along multiple paths, and

Manuscript received January 05, 2009. Date of current version November 19,
2010. The material in this paper was presented in part at the IEEE Information
Theory Workshop (ITW), Porto, Portugal, May 2008, at the IEEE International
Symposium on Information Theory (ISIT), Toronto, ON, Canada, July 2008,
and at the IEEE 25th Convention of Electrical and Electronics Engineers in Is-
rael, Eilat, Israel, December 2008.

T. Koch was with the Department of Information Technology and Electrical
Engineering, ETH Zurich, 8092 Zurich, Switzerland. He is now with the De-
partment of Engineering, University of Cambridge, Cambridge CB2 1PZ, U.K.
(e-mail: tobi.koch@eng.cam.ac.uk).

A. Lapidoth is with the Department of Information Technology and Electrical
Engineering, ETH Zurich, 8092 Zurich, Switzerland (e-mail: lapidoth@isi.ee.
ethz.ch).

Communicated by L. Zheng, Associate Editor for Communications.
Digital Object Identifier 10.1109/TIT.2010.2080995

where relative movements of transmitter, receiver, and ob-
stacles lead to time-variations of the path gains and delays.
Examples of wireless communication scenarios where the
receiver observes typically more than one path include radio
communications (particularly if the transmitted signal is of
large bandwidth as, for example, in Ultra-Wideband or in
CDMA) and underwater acoustic communications.

The capacity of noncoherent multipath fading channels has
been investigated extensively in the wideband regime, where the
signal-to-noise ratio (SNR) is typically small. It was shown by
Kennedy that, in the limit as the available bandwidth tends to
infinity, the capacity of the fading channel is the same as the
capacity of the additive white Gaussian noise (AWGN) channel
of equal received power; see [1, Sec. 8.6] and references therein.

To the best of our knowledge, not much is known about the
capacity of noncoherent multipath fading channels at high SNR.
For the special case of noncoherent frequency-flat fading chan-
nels (where we only have one path), it was shown by Lapidoth
and Moser [2] that if the fading process is of finite entropy rate,
then at high SNR capacity grows double-logarithmically in the
SNR. This is much slower than the logarithmic growth of the
AWGN capacity [3].

In this work, we study the high-SNR behavior of the capacity
of noncoherent multipath fading channels (where the number
of paths is typically greater than one). We demonstrate that the
capacity of such channels does not merely grow more slowly
with the SNR than the capacity of the AWGN channel, but it may
be even bounded in the SNR. In other words, for such channels
the capacity does not necessarily tend to infinity as the SNR
tends to infinity.

We derive a necessary and a sufficient condition for the ca-
pacity to be bounded in the SNR. We show that if the vari-
ances of the path gains decay exponentially or slower, then ca-
pacity is bounded in the SNR. In contrast, if the variances of
the path gains decay faster than exponentially, then capacity is
unbounded in the SNR. We further show that if the number of
paths is finite, then at high SNR capacity increases double-loga-
rithmically with the SNR, and the capacity pre-loglog—defined
as the limiting ratio of the capacity to SNR as the SNR
tends to infinity—is 1 irrespective of the number of paths.

The rest of this paper is organized as follows. Section II de-
scribes the channel model. Section III is devoted to channel ca-
pacity. Section IV summarizes our main results. Sections V and
VI derive the upper bounds and the lower bounds on channel
capacity that are used to prove these results. Section VII con-
cludes the paper with a brief discussion of our results.

II. CHANNEL MODEL

Let and denote the set of complex numbers and the set
of positive integers, respectively. We consider a discrete-time
multipath fading channel whose channel output at time
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corresponding to the time-1 through time- channel in-
puts is given by

(1)

Here (where denotes the set of integers) models
additive noise, and denotes the time- gain of the th path.
We assume that is a sequence of independent
and identically distributed (i.i.d.), zero-mean, variance- , cir-
cularly-smmmetric, complex Gaussian random variables. For
each path (where denotes the set of nonnegative in-
tegers), we assume that is a zero-mean, complex
stationary process. We denote its variance and its differential en-
tropy rate by

(2)

(3)

We shall say that the channel has a finite number of paths, if for
some finite integer

(4)

We assume that . We further assume that

(5)

(6)

where the set is defined as .
(If the path gains are Gaussian, then (6) is equivalent to the
mean-square error in predicting the present path gain from its
past being strictly positive, i.e., the present path gain cannot be
predicted perfectly from its past.) We finally assume that the
processes

are independent (“uncorrelated scattering”); that they are jointly
independent of ; and that the joint law of

does not depend on the input sequence . We con-
sider a noncoherent channel model where neither transmitter
nor receiver is cognizant of the realization of ,

, but both are aware of their law. We do not assume that
the path gains are Gaussian.

III. CHANNEL CAPACITY

Let denote the sequence . We define
the capacity (in nats per channel use) as

SNR (7)

where the supremum is over all joint distributions on
satisfying the power constraint

(8)

and where SNR is defined as

SNR (9)

Here denotes the limit inferior and the limit superior.
By Fano’s inequality, no rate above SNR is achievable. (See
[4] for a definition of an achievable rate.) We do not claim that
there is a coding theorem associated with (7), i.e., that SNR
is achievable. A coding theorem will hold, for example, if the
number of paths is finite, and if the processes corresponding to
these paths
are jointly ergodic (see [5, Th. 2]).

The special case of noncoherent frequency-flat fading chan-
nels (where we have only one path) was studied by Lapidoth and
Moser [2]. They showed that if the fading process

is ergodic, then the capacity satisfies [2, Th. 4.41]

SNR SNR

(10)

where denotes the natural logarithm function. Thus, at
high SNR the capacity of noncoherent frequency-flat fading
channels grows double-logarithmically with the SNR. Lapidoth
and Moser concluded that communicating over noncoherent
frequency-flat fading channels at high SNR is extremely
power-inefficient, as one should expect to square the SNR for
every additional bit per channel use.1

In this paper, we show inter alia that communicating over
noncoherent multipath fading channels at high SNR is not
merely power-inefficient, but may be even worse: if the delay
spread is large in the sense that the sequence
(which describes the variances of the path gains) decays expo-
nentially or slower, then capacity is bounded in the SNR. For
such channels, capacity does not tend to infinity as the SNR
tends to infinity. The main results of this paper are presented in
the following section.

IV. MAIN RESULTS

Our main results are a sufficient and a necessary condition on
for SNR to be bounded in the SNR, as well as

a characterization of the capacity pre-loglog when the number
of paths is finite.

Theorem 1: Consider the above channel model. Then

(i) SNR

1Note that the capacity of coherent fading channels (where the fading real-
ization is known to the receiver) grows logarithmically with the SNR [6]. Thus
in the coherent case it suffices to double the SNR for every additional bit per
channel use.
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(ii) SNR

where we define for every and .
Proof: Part (i) is proven in Section V-A, and Part (ii) is

proven in Sections VI-A and B.

By noting that

we obtain the following.

Corollary 2: Consider the above channel model. Then

(i) SNR

(ii) SNR

where we define for every and .
For example, if

then

and it follows from Part (i) of Corollary 2 that the capacity is
bounded in the SNR. However, if

for some , then

and it follows from Part (ii) of Corollary 2 that the capacity is
unbounded in the SNR. Roughly speaking, we can say that if

decays exponentially or slower, then SNR is
bounded in the SNR, and if decays faster than ex-
ponentially, then SNR is unbounded in the SNR. The condi-
tion for unbounded capacity (Part (ii) of Corollary 2) is clearly
satisfied if the channel has a finite number of paths, since in this
case

which implies

and

Consequently, it follows from Corollary 2 that if the number
of paths is finite, then SNR is unbounded in the SNR. This
is not surprising, because if there are only paths, then
transmitting only at times that are integer multiples of ,
and measuring the channel outputs only at these times, reduces

the channel to a frequency-flat fading channel and demonstrates
[using (10)] the achievability of

SNR

(where tends to zero as SNR ), which is unbounded
in the SNR.

The above achievable rate suggests that at high SNR the ca-
pacity is decreasing in the number of paths. However, Theorem
3 ahead shows that if the number of paths is finite, then the ca-
pacity pre-loglog, defined as

SNR
SNR

(11)

is 1 irrespective of the number of paths. The pre-loglog in this
case is thus the same as for frequency-flat fading.

Theorem 3: Consider the above channel model. Further as-
sume that the number of paths is finite. Then the limit on the
right-hand side (RHS) of (11) exists, and the capacity pre-loglog
is given by

SNR
SNR

(12)

Proof: See Section V-B for the converse and Sections VI-A
and C for the direct part.

When studying multipath fading channels at low or at mod-
erate SNR, it is often assumed that the channel has a finite
number of paths, even if the number of paths is in reality infi-
nite. This assumption is commonly justified by saying that only
the first paths are relevant, since the variances of the
remaining paths are typically small and hence the influence of
these paths on the capacity is marginal. As we see from Theo-
rems 1 and 3, this argument is not valid at high SNR. In fact,
if for example the sequence of variances decays
exponentially, then according to Part (i) of Theorem 1 the ca-
pacity is bounded in the SNR. However, if we consider only the
first paths and set the other paths to zero, then it follows
from Theorem 3 that the capacity is unbounded: irrespective of

it increases double-logarithmically with the SNR. Thus, even
though the variances of the remaining paths , can be
made arbitrarily small by choosing sufficiently large, these
paths have a significant influence on the capacity behavior at
high SNR.

The reason why paths with a small variance can affect the
capacity behavior is that the capacity depends on the variance
of the product of the path gains and the transmitted signal and
not on the variance of the path gains only. Since at high SNR
the variance of might be huge even if the

variance of is small, the relevance of a path is
determined not only by its own variance but also by the power
available at the transmitter. The number of paths that are needed
to approximate a multipath fading channel typically depends on
the SNR and may grow to infinity as the SNR tends to infinity.

In order to prove the above results, we derive upper and
lower bounds on the capacity. Since these bounds may also be
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of independent interest, we summarize them in the following
propositions.

Proposition 4 (Upper Bounds):
i) Consider the above channel model. Further assume that for

some and some

and

Then the capacity is upper bounded by

SNR (13)

for all SNR , where

(14)

ii) Consider the above channel model. Further assume that

Then

SNR SNR

(15)

Proof: Part (i) is proven in Section V-A, and Part (ii) is
proven in Section V-B.

For example, if is a geometric sequence, i.e.,

for some , and if the path gains are Gaussian and
memoryless so

then Part (i) of Proposition 4 yields

SNR SNR (16)

Part (ii) of Proposition 4 combines with (10) to show that the
pre-loglog of a multipath fading channel can never be larger than
the pre-loglog of a frequency-flat fading channel. This result
is consistent with the intuition that at high SNR the multipath
behavior is detrimental.

Our last result is a lower bound on the capacity. This bound
is the basis for the proof of Part (ii) of Theorem 1 and for the
direct part of Theorem 3.

Proposition 5 (Lower Bound): Consider the above channel
model. Further assume that

(17)

Let be some positive integer that satisfies

(18)

(if the number of paths is finite, then satisfies
(18); otherwise grows with ) and let be some ar-
bitrary positive integer that is allowed to depend on . Then
the capacity SNR is lower bounded by

SNR

(19)
where

(20)

Proof: See Section VI-A.

V. PROOFS OF THE UPPER BOUNDS

In this section, we prove Proposition 4, which in turn is used
to prove Part (i) of Theorem 1 and the converse to Theorem 3.

Part (i) of Proposition 4 is proven in Section V-A, where
it is also demonstrated that it implies Part (i) of Theorem 1.
Section V-B proves Part (ii) of Proposition 4. This part pro-
vides an upper bound on the capacity pre-loglog and will be
used later, together with a capacity lower bound that is derived
in Section VI, to establish Theorem 3.

A. Bounded Capacity

We provide a proof of Part (i) of Proposition 4 by deriving an
upper bound on channel capacity that holds under the assump-
tion that for some and some

and (21)

As this bound does not depend on the SNR, Part (i) of Theorem
1 follows immediately from Part (i) of Proposition 4 by noting
that if

then we can find a and an satisfying (21).
The proof of the desired upper bound is akin to the proof of

an upper bound that was derived in [7, Sec. VI-A]. (However,
[7] studies a channel whose inputs and outputs take value in the
set of real numbers rather than in .) It is based on (7) and on
an upper bound on .

We begin with the chain rule for mutual information
[4, Th. 2.5.2]

(22)
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The first sum on the RHS of (22) consists of summands,
which increase all at most logarithmically with . Consequently,
also the sum increases at most logarithmically with , and its
ratio to vanishes as tends to infinity. Indeed, we have for

SNR (23)

where the first step follows because conditioning cannot
increase differential entropy [4, Th. 9.6.1]; the second step
follows from the entropy maximizing property of Gaussian
random variables [4, Th. 9.6.5]; and the last step follows by
upper bounding

and from the power constraint (8).
Before we continue by upper bounding the second sum on

the RHS of (22), we would like to pause for some intuition.
Firstly, for every there exists a distri-
bution on for which grows
double-logarithmically with the SNR. (This is, for example, the
case if and if is such that
it achieves the high-SNR asymptotic capacity of noncoherent
flat-fading channels [2].) In order to obtain a tight upper bound,
we therefore cannot upper bound each summand individually
but have to upper bound the sum as a whole. Secondly, the mu-
tual information is difficult to evaluate. For
example, we could express as

and evaluate

However, the standard approach to upper bound
by using the entropy maximizing property of Gaussian random
variables and that conditioning cannot increase entropy, i.e.,

(24)

is not very promising, since it results in an upper bound
on that is given by the logarithm of a
sum of expectations minus the expectation of the logarithm
of a sum, which is still difficult to evaluate. Moreover, it
is not clear whether (24) results in a tight upper bound on

.

We shall circumvent the latter problem by using the gen-
eral upper bound on mutual information that was proposed in
[2, Th. 5.1], namely

(25)

where denotes relative entropy, i.e.,

if
otherwise

(where indicates that is absolutely continuous
with respect to ), is the channel law, denotes the
distribution on the channel input , and is any distribution
on the output alphabet.2 Thus, any choice of output distribution

yields an upper bound on the mutual information. Note
that (25) is tight if is equal to the capacity-achieving output
distribution.

For any given , we choose the output distribu-
tion to be of density

(26)

with and3

(27)

The density (26) corresponds to the density of a circu-
larly-symmetric complex random variable whose magnitude is
Cauchy distributed. With this choice

and (28)

For example, if is a geometric sequence, then
and (27) yields , which clearly satisfies (28).

Note that, by choosing to be dependent on , the output
distribution has memory in the sense that the present output
symbol depends on the previous symbols .

Using (26) in (25), and averaging over , we obtain for

(29)

2For channels with finite input and output alphabets this inequality follows
by Topsøe’s identity [8]; see also [9, Th. 3.4].

3If � � �, then the density (26) is undefined. However, this event is
of zero probability and has therefore no impact on the mutual information
� � �� � .
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By choosing to be of density (26), we thus obtain an upper
bound on that contains only expectations of
logarithms and not a mixture of expectations of logarithms and
logarithms of expectations. This will facilitate the analysis.

We bound the third and the fourth term in (29) individually.
We begin by upper bounding

(30)

using Jensen’s inequality. We further note that

which yields (31), shown at the bottom of the page, where the
second step follows from (28); the third step follows by substi-
tuting ; and the last step follows because

We thus obtain from (30) and (31)

(32)

Next we derive a lower bound on . Let

and let

We have

(33)

where the first step follows because conditioning cannot in-
crease differential entropy; and where the second step follows
because, conditional on , is independent of

. Let be defined as

(34)

Using the entropy power inequality [4, Th. 16.6.3], and using
that the processes

are independent and jointly independent of , it is shown in
Appendix A that for any given

(35)

We lower bound the differential entropies on the RHS of (35) as
follows. The differential entropies in the sum are lower bounded
by

(36)

where the first step follows from the behavior of differential
entropy under scaling [4, Th. 9.6.4]; and where the second step
follows by the stationarity of the process , which
implies that the differential entropy

cannot be smaller than the differential entropy rate
[4, Th. 4.2.1 and Th. 4.2.2], and by lower bounding
by (which holds for each because

(31)
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). The last differential entropy on the RHS of (35) is
lower bounded by

(37)

which follows because conditioning cannot increase differential
entropy, and because Gaussian random variables maximize dif-
ferential entropy, so

(38)

Applying (36) and (37) to (35), and averaging over , yields

(39)

Returning to the analysis of (29), we obtain from (32) and (39)

(40)

where we define

(41)

Applying (40) and (23) to (22), we have

SNR

SNR

(42)

Note that for every there ex-
ists a distribution on for which the difference

is unbounded in the SNR. How-
ever, the average

vanishes as tends to infinity, since the term
cancels at for every

. To show this mathematically, we note that for
any sequences and

(43)

Defining and we have
for the first sum on the RHS of (43)

SNR (44)

where denotes Euler’s constant. Here the second step
follows by Jensen’s inequality; the third step follows by upper
bounding

and the fourth step follows by noting that, conditional on
, we have that is

stochastically larger than , so

from which we obtain the lower bound

upon averaging over (see [2,
Sec. VI-B] and in particular [2, Lemma 6.2b]); and the last
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step follows by noting that the expected logarithm of an expo-
nentially distributed random variable of mean is given by

.
For the second sum on the RHS of (43) we have

(45)

Thus applying (43)–(45) to (42) yields

SNR

(46)

which tends to

as tends to infinity. This proves Part (i) of Proposition 4.

B. Unbounded Capacity

We prove Part (ii) of Proposition 4 by deriving an upper bound
on capacity that holds under the assumption that

From this upper bound follows that

SNR SNR (47)

which in turn shows that the capacity pre-loglog is upper
bounded by

SNR
SNR

(48)

This yields the converse to Theorem 3.
As in Section V-A, the desired upper bound follows by (7)

and by deriving an upper bound on . To this end,
we begin with the chain rule for mutual information

(49)

and upper bound each summand on the RHS of (49) by [2, (27)]

(50)

which holds for any . Here denotes the Gamma
function. The upper bound (50) follows from (25) by choosing

to be the distribution of a circularly-smmmetric com-
plex random variable whose squared magnitude is Gamma
distributed. It was noted in [2, p. 2429] that this upper bound
is tight enough to show that the capacity of noncoherent
frequency-flat fading channels does not grow faster than
double-logarithmically with the SNR.

We evaluate the terms on the RHS of (50) individually. We
upper bound the first term using Jensen’s inequality

(51)

The second term was already evaluated in (39)

(52)

and the next term is readily evaluated as

(53)

Our choice of will satisfy [see (55)]. We therefore
obtain, upon substituting (51)–(53) in (50)

(54)
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where the last inequality follows by lower bounding

We choose

SNR
(55)

where we define

Defining

SNR

we obtain

SNR SNR

SNR
(56)

Using (56) in (49) yields then

SNR SNR

SNR
(57)

By Jensen’s inequality we obtain

SNR (58)

where the last step follows by rearranging the double sum as

and by upper bounding then and using the power
constraint (8).

Combining (58) and (57) with (7), we obtain the upper bound

SNR

SNR SNR (59)

It follows from [2, (337)] that

SNR

(60)
Noting that

SNR SNR

we obtain from (59) and (60) the desired result

SNR SNR

(61)

VI. PROOFS OF THE ACHIEVABILITY RESULTS

In Section VI-A, we derive the lower bound on channel ca-
pacity that is presented in Proposition 5. This lower bound will
be used in Sections VI-B and VI-C to prove Part (ii) of Theorem
1 and to prove the direct part of Theorem 3, respectively.

A. Lower Bound

To derive the desired lower bound on capacity, we eval-
uate for the following distribution on the inputs

.
Let be such that

(62)

To shorten notation, we shall write in the following instead of
. Let be some positive integer that possibly depends

on , and let . We choose
to be i.i.d. with

where is a sequence of indepen-
dent, zero-mean, circularly-symmetric, complex random vari-
ables with being uniformly distributed over the in-
terval , i.e., for each

(Here and throughout this proof we assume that .)
Here the first zero-symbols in are guard symbols and en-

sure that transmission in block is not affected by transmissions
that took place in previous blocks. The subsequent symbols are
chosen such that for every the power of
is much larger than the power of the previously (in the same
block) transmitted symbols, guaranteeing that the interference
from these symbols is insignificant.
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In the following we analyze the information rates that are
achievable with this coding scheme. Define (where

denotes the largest integer that is less than or equal to ),
and let denote the vector . By
the chain rule for mutual information we have

(63)

where the first step follows by restricting the number of observ-
ables; and where the last step follows by restricting the number
of observables and by noting that is i.i.d. We con-
tinue by lower bounding each summand on the RHS of (63). We
use again the chain rule and that reducing observations cannot
increase mutual information to obtain

(64)

where we have additionally used in the last inequality that
are independent.

Defining

(65)

each summand on the RHS of (64) can be written as

(66)

A lower bound on (66) follows from the following lemma.

Lemma 6: Let the random variables , , and have finite
second moments. Assume that both and are of finite dif-
ferential entropy. Finally, assume that is independent of ;
that is independent of ; and that forms
a Markov chain. Then

(67)

where and denote the variances of and
. (Note that the assumptions that and have finite second

moments and are of finite differential entropy guarantee that
and are finite, see [2, Lemma 6.7e].)

Proof: See [10, Lemma 4].

It can be easily verified that for the channel model given in
Section II and for the above coding scheme the lemma’s condi-
tions are satisfied. We therefore obtain from Lemma 6

(68)

Using that the differential entropy of a circularly-smmmetric
random variable is given by [2, Eqs. (320) and (316)]

(69)
and evaluating for our choice of , yields
for the first two terms on the RHS of (68)

(70)

We next upper bound

(71)

To this end, we note that for our choice of and by
the assumption that , we have

(72)

(73)

(74)

from which we obtain

(75)

and

(76)

Applying (74)–(76) to (71) yields

(77)
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where

Here the second step follows because , and are
nonnegative, and the last step follows from (62).

By combining (68) with (70) and (77), and by noting that by
the stationarity of

we obtain the lower bound

(78)

Note that the RHS of (78) neither depends on nor on . We
therefore obtain from (78), (64), and (63)

(79)

where is defined as

Dividing the RHS of (79) by , and computing the limit as
tends to infinity, yields the lower bound

SNR (80)

where we have used that . This proves
Proposition 5.

B. Condition for Unbounded Capacity

We use Proposition 5 to prove Part (ii) of Theorem 1. In par-
ticular, we show that if

(81)

then, by cleverly choosing and , the lower bound (19),
namely

SNR

can be made arbitrarily large as the SNR tends to infinity. To this
end, we first note that by (81) there exists for every
an such that

(82)

By choosing

(83)

(where denotes the smallest integer that is greater than or
equal to ) and , we obtain from (19) the lower bound

SNR (84)

Taking the limit as the SNR (and, hence, also SNR)
tends to infinity yields

SNR (85)

Since this holds for every , we have

SNR (86)

It remains to show that and our choice of
(83) satisfy conditions (17) and (18) of Proposition 5, namely

and

It follows immediately from (5) and (82) that
satisfies (17)

(87)

In order to show that satisfies (18), we first note that by
(82)

(88)

Since tends to infinity as , it follows that is
greater than for sufficiently large . Furthermore, (83)
implies

(89)

We therefore obtain from (88) and (89)

(90)

thus demonstrating that satisfies (18).
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C. Pre-LogLog

We use Proposition 5 to prove Theorem 3. To this end, we
first note that because the number of paths is finite, we have for
some

(91)

which implies that

(92)

and

(93)

Consequently, (17) and (18) of Proposition 5 are satisfied, and
it follows from (19) that the capacity is lower bounded by

SNR (94)

Dividing by SNR and computing the limit as SNR tends
to infinity (while holding and fixed) yields

SNR
SNR

(95)

where we have used that for any fixed

SNR

The lower bound on the capacity pre-loglog

SNR
SNR

SNR
SNR

(96)

follows then by letting tend to infinity. Together with the upper
bound , which was derived in Section V-B, this proves
Theorem 3.

VII. CONCLUSION

We studied the high-SNR behavior of the capacity of non-
coherent multipath fading channels. We demonstrated that, de-
pending on the decay rate of the sequence , ca-
pacity may be bounded or unbounded in the SNR. We further
showed that if the number of paths is finite, then at high SNR
capacity grows double-logarithmically with the SNR, and the
capacity pre-loglog is 1 irrespective of the number of paths. The
picture that emerges is as follows:

• If decays exponentially or slower, then ca-
pacity is bounded in the SNR.

• If decays faster than exponentially, then ca-
pacity is unbounded in the SNR.

• If the number of paths is finite, then the capacity pre-loglog
is equal to 1, irrespective of the number of paths.

The conclusions that can be drawn from these results are
twofold. Firstly, multipath fading channels with an infinite
number of paths and multipath fading channels with a finite

number of paths have in general completely different capacity
behaviors at high SNR. Indeed, at high SNR, if the number
of paths is finite, then capacity grows double-logarithmically
with the SNR, whereas if the number of paths is infinite, then
capacity may even be bounded in the SNR. Thus, while for low
or for moderate SNR it might be reasonable to approximate
a multipath fading channel with infinitely many paths by a
multipath fading channel with only a finite number paths, this
is not reasonable when the SNR tends to infinity. The number
of paths that are needed to approximate a multipath fading
channel typically depends on the SNR and may grow to infinity
as the SNR tends to infinity.

Secondly, the above results indicate that the high-SNR be-
havior of the capacity of multipath fading channels depends crit-
ically on the assumed channel model. Thus, when studying such
channels at high SNR, the channel modeling is crucial, as slight
changes in the channel model might lead to completely different
capacity results.

APPENDIX

To prove (35) we lower bound

for a given and average the result over . Let

We have

(97)

where is defined in (34). Here the first step follows because
conditioning cannot increase differential entropy; the second
step follows because differential entropy is invariant under
deterministic translation [4, Th. 9.6.3] and because terms for
which we have do not contribute to the sum; the third
step follows from the ”uncorrelated scattering” assumption,
i.e., from the assumption that the processes

are independent, which implies that, conditioned on
, the path gains do

not depend on ; and the last step follows from the entropy
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power inequality [4, Th. 16.6.3] and from the “uncorrelated
scattering” assumption which implies that depends only on

and not on . (Note that, for a given ,
the conditional entropies on the RHS of (97) are possibly

. However, by (6) this event is of zero probability and has
therefore no impact on (97) when averaged over .)

Since the processes

are independent and jointly independent of , we can compute
the expectation of (97) over by averaging (97) first over

, then averaging the result over , and so on. To lower
bound the individual expectations, we note that the function

is convex for every . Let , be defined
as

(98)

Then it follows from Jensen’s inequality that for every
the conditional expectation, conditioned on ,

, is lower bounded by

(99)

Averaging (97) over , and employing (99) to compute this
average, yields the desired lower bound (35)

(100)
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