Acoustics I: absorption-reflection-transmission

Kurt Heutschi
2013-01-25
introduction
introduction

Absorption - Reflection - Transmission

introduction

absorption
characterization
absorber types
measurement methods
absorption and impedance
typical absorption values
covers

back
absorption
characterization of absorption and reflection
characterization of absorption and reflection

- absorption property \rightarrow absorption coefficient (real, $0 < \alpha < 1$)

$$
\alpha = \frac{\text{absorbed energy}}{\text{incident energy}}
$$
characterization of absorption and reflection

reflection property \rightarrow reflection factor (complex, $0 < |R| < 1$)

$$R = \frac{\text{sound pressure reflected wave}}{\text{sound pressure incident wave}}$$
characterization of absorption and reflection

- relation between α and R for plane waves:

$$\alpha = 1 - |R|^2$$
absorber types
porous absorbers
porous absorbers

- materials:
 - glass fibers
 - organic fibers (e.g. wood)
 - open foams

- absorption mechanism:
 - sound particle velocity corresponds to oscillating air in the pores
 - → friction losses

- placement:
 - where sound particle velocity is high
resonance absorber: type Helmholtz
resonance absorber: type Helmholtz

- absorption mechanism:
 - spring-mass system
 - spring = enclosed air volume
 - mass = oscillating air column
 - maximal absorption at resonance

resonance frequency f_0 for stiffness s of the spring and mass m:

$$f_0 = \frac{\sqrt{s}}{m} \frac{2\pi}{2\pi}$$
resonance absorber: type Helmholtz

- mass \(m = ? \)
- stiffness of the spring \(s = ? \)
resonance absorber: type Helmholtz

mass m:

- mass of the oscillating air column:
 - mass of cylinder of length $l + \text{end correction } l_{\text{corr}}$
 - $l_{\text{corr}} \approx 0.8R$ (radius of cylinder)
 - with S: cross sectional area of cylinder follows:

$$m = \rho_0(l + l_{\text{corr}})S$$
resonance absorber: type Helmholtz

stiffness s of the spring:

- piston acting on air volume
- virtual experiment
 - air cavity with volume V
 - piston with area S
 - external force F makes piston to sink in by Δl
resonance absorber: type Helmholtz

force F leads to a pressure change ΔP with

$$\Delta P = \frac{F}{S}$$

penetration depth Δl corresponds to ΔV with

$$\Delta V = \Delta l \cdot S$$
resonance absorber: type Helmholtz

adiabatic state change (linearized):
\[
\frac{\Delta P}{P_0} = -\kappa \frac{\Delta V}{V}
\]

inserted:
\[
\frac{F}{\Delta l} = -\kappa \frac{P_0 S^2}{V}
\]

with
\[
c = \sqrt{\kappa \frac{P_0}{\rho_0}}
\]

follows
\[
\frac{F}{\Delta l} = s = -c^2 \rho_0 \frac{S^2}{V}
\]
resonance absorber: type Helmholtz

resonance frequency:

$$f_0 = \frac{c}{2\pi} \sqrt{\frac{S}{V(l + l_{corr})}}$$

- for practical applications: introduction of porous damping in the resonator neck (max. velocity)
 - energy loss
 - lowering of the resonator quality
 - absorbing effect over a wider frequency range
resonance absorber: panels with holes or slits (Helmholtz)
panel with holes

- perforated panel in front of an air cavity (with damping material)

![Diagram of panel with holes]

- spring-mass resonator where:
 - spring: air cavity
 - mass: mass of the oscillating air columns in the holes (end correction!)
 - damping: porous absorber in the cavity
resonance absorber: micro-perforated absorber (Helmholtz)
micro-perforated absorber

- panel with very fine holes in front of an air cavity

- spring-mass resonator where:
 - spring: air cavity
 - mass: mass of the oscillating air columns (end correction!)
 - damping: friction losses in the tiny holes

- analytical description available
micro-perforated absorber

<table>
<thead>
<tr>
<th></th>
<th>variant 1</th>
<th>variant 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>plate thickness</td>
<td>3 mm</td>
<td>3 mm</td>
</tr>
<tr>
<td>holes diameter</td>
<td>0.4 mm</td>
<td>2 mm</td>
</tr>
<tr>
<td>holes spacing</td>
<td>2 mm</td>
<td>15 mm</td>
</tr>
<tr>
<td>distance to wall</td>
<td>100 mm</td>
<td>50 mm</td>
</tr>
</tbody>
</table>

![Graph showing absorption coefficients for two variants](image-url)
micro-perforated absorber

- transparent solutions are possible!
resonance absorber: membrane absorber
resonance absorber: membrane absorber

- absorption mechanism:
 - spring-mass system
 - spring = enclosed air
 - mass = vibrating plate or membrane
 - maximum absorption at the resonance frequency

resonance frequency f_0 for stiffness s'' per unit area and mass m'' per unit area:

$$f_0 = \frac{\sqrt{s''}}{2\pi \cdot m''}$$
resonance absorber: membrane absorber

stiffness of air cavity per unit area s'':

$$s'' = \frac{\rho_0 c^2}{I_w}$$

with

I_w: distance to wall (thickness of air cavity)

and consequently:

$$f_0 = \frac{c}{2\pi} \sqrt{\frac{\rho_0}{m'' I_w}}$$
resonance absorber: membrane absorber

- range of application: low frequency absorber
- design rules:
 - minimum plate area 0.4 m^2
 - minimum plate dimensions 0.5 m
 - air cavity has to be filled with porous absorber
- typical absorption $\alpha \approx 0.6$ in range of $1 \ldots 2$ octaves
- sandwich combinations with porous absorber possible
resonance absorber: membrane absorber
measurement methods
measurement of absorption

- methods:
 - Kundt’s tube
 - impedance tube
 - reverberation chamber
 - impulse response in situ
measurement of absorption

properties of the methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Angle</th>
<th>Phase</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kundt's tube</td>
<td>normal</td>
<td>(no)</td>
<td>discrete</td>
</tr>
<tr>
<td>impedance tube</td>
<td>normal</td>
<td>yes</td>
<td>spectrum</td>
</tr>
<tr>
<td>reverb. chamber</td>
<td>diffuse</td>
<td>no</td>
<td>third octaves</td>
</tr>
<tr>
<td>impulse response</td>
<td>arbitrary</td>
<td>yes</td>
<td>spectrum</td>
</tr>
</tbody>
</table>
Kundt’s tube
Kundt’s tube

- Tube diameter $\ll \lambda$ (typ. 10 cm or 2 cm)
- Incident and reflected sinusoidal plane wave form an interference pattern (standing wave)
- From $\frac{p_{\text{max}}}{p_{\text{min}}}$, α can be calculated
Kundt’s tube

\(p_e \): sound pressure amplitude of incident wave
\(p_r \): sound pressure amplitude of reflected wave

\[
\frac{p_r}{p_e} = \sqrt{1 - \alpha}
\]

sound pressure maxima: constructive interference:

\[
p_{\text{max}} = p_e + p_r = p_e(1 + \sqrt{1 - \alpha})
\]

sound pressure minima: destructive interference:

\[
p_{\text{min}} = p_e - p_r = p_e(1 - \sqrt{1 - \alpha})
\]
Kundt’s tube

from:

\[n = \frac{p_{\text{max}}}{p_{\text{min}}} \]

follows the absorption coefficient:

\[\alpha = 1 - \left(\frac{n - 1}{n + 1} \right)^2 \]
impedance tube
impedance tube

- tube diameter $\ll \lambda$ (typ. 10 cm resp. 2 cm)
- determination of the transfer function between two fixed microphone positions
impedance tube

with the arbitrary reference $p_{\text{ein}}(A) = 1$ follows

$$H = \frac{p(B)}{p(A)} = \frac{e^{-jk s} + R \cdot e^{-jk(s+2l)}}{1 + R \cdot e^{-j2k(s+l)}}$$
resolved for R:

$$R(f) = \frac{e^{-jks} - H(f)}{H(f) - e^{jks}} e^{j2k(l+s)}$$

- from R: impedance can be calculated (complete information) and thus α
- broadband excitation (white noise, frequency discrimination with help of FFT)
- high quality microphones necessary, calibration with exchanged microphones
reverberation chamber
reverberation chamber

- measurement of the reverberation time T with and without probe material ($10.\ldots12 \text{ m}^2$)
- by usage of empirical relation between α and T, α can be determined
- reverberation time formula found by Sabine (diffuse field assumption!):

$$T = \frac{0.16V}{A}$$
reverberation chamber

▶ maximal accuracy for large differences *with* and *without* material probe
 ▶ → test chamber with minimal absorption (reverberation chamber)
▶ result: α_S in third octaves or octaves
▶ investigation in diffuse sound field corresponds to averaging over all incident directions
▶ $\alpha_S > 1$ is possible!
 ▶ sound field with absorber violates diffuse field assumption
 ▶ edge effects (diffraction along the border of the probe)
reverberation chamber

reverberation chamber at Empa:
reverberation chamber

reverberation chamber at Empa:

![Graph showing sound absorption over frequency](image-url)
in situ impulse response measurement
in situ impulse response measurement

- in situ determination of absorption coefficients:
 - already installed surfaces (e.g. room acoustical analysis of existing objects)
 - elements that can’t be brought to the laboratory
 - investigation for specific angles of incident
in situ impulse response measurement

element transparent noise barrier:
in situ impulse response measurement

eexample transparent noise barrier:
in situ impulse response measurement

- points to consider:
 - the size of the element under test has to be large enough (critical at low frequencies → Fresnel zone)
 - measurement geometry should allow to separate different contributions (critical at low frequencies)
 - reflection contributions have to be compensated for the additional geometrical divergence
 - relatively large measurement uncertainty for non-flat surfaces
 - standardized procedure: EN 1793-5 (Adrienne)
absorption and impedance
normal incidence
absorption and impedance: normal incidence

situation: plane wave in medium with impedance Z_0 hits a medium with Z_1
absorption and impedance: normal incidence

incident wave: p_1, v_1 with

\[
\frac{p_1}{v_1} = Z_0
\]

reflected wave: $p_{\|}$, $v_{\|}$ with

\[
\frac{p_{\|}}{v_{\|}} = Z_0
\]

On the surface holds:

\[
p = p_1 + p_{\|}
\]

\[
v = v_1 - v_{\|}
\]

with:

\[
\frac{p}{v} = Z_1
\]
absorption and impedance: normal incidence

\[p_I + p_{II} = Z_1 \left(\frac{p_I}{Z_0} - \frac{p_{II}}{Z_0} \right) \]

follows:

\[\frac{p_{II}}{p_I} = R = \frac{Z_1 - Z_0}{Z_1 + Z_0} \]

\[Z_1 = Z_0 \rightarrow R = 0, \quad \alpha = 1 \]
\[Z_1 \gg Z_0 \rightarrow R \rightarrow 1, \quad \alpha \rightarrow 0 \]
absorption and impedance: normal incidence

- porous absorber in front of hard wall:
 - hard termination increases resulting impedance → reduction of the absorption
 - thickness of the absorber $> \lambda/4$ (if possible)
 - thin layers should be mounted with distance to the hard termination
oblique incidence
absorption and impedance: oblique incidence

- locally reacting absorber
 - only sound propagation in the absorber perpendicular to the surface (often reasonable assumption due to refraction)
 - impedance is independent of the incident angle
- laterally reacting absorber
 - relevant sound propagation component parallel to the surface
absorption and impedance: oblique incidence

- for locally reacting absorber:

\[
\frac{p_{II}}{p_I} = R = \frac{Z_1 - \frac{Z_0}{\cos(\phi)}}{Z_1 + \frac{Z_0}{\cos(\phi)}}
\]

with

\(\phi\): angle of sound incidence direction relative to the surface normal direction

- \(Z_1 = \frac{Z_0}{\cos(\phi_g)} \rightarrow R = 0, \ \alpha = 1\)

- \(\phi \rightarrow 90^\circ \rightarrow R \rightarrow -1, \ \text{phase} = 180^\circ, \ \alpha \rightarrow 0\)
typical absorption values
typical absorption values

- stone floor

![Graph showing typical absorption values for stone floor](graph.png)
typical absorption values

- parquet floor
typical absorption values

- carpet, thickness 5mm
typical absorption values

▶ plaster
typical absorption values

- acoustically optimized plaster, thickness 20mm
typical absorption values

- window

![Graph showing absorption values vs. frequency](image-url)
typical absorption values

- heavy curtain
typical absorption values

- egg carton

![Graph showing absorption values over frequency (Hz)]
typical absorption values

- glass fiber panel, thickness 50 mm
typical absorption values

- panel resonator, 4 mm wood, 120 mm air layer

![Graph showing typical absorption values](image)
typical absorption values

▶ audience on upholstered chairs

![Graph showing typical absorption values vs. frequency (Hz)]
covers for porous absorbers
covers for porous absorbers

- porous absorbers are usually covered by mechanical protection
 - plates with holes or slits
 - requirement: no significant influence on absorption
 → no relevant transmission loss
covers for porous absorbers

- reason for transmission loss?
 - inertia of the mass of the oscillating air columns in the openings
 - acceleration of the air columns has to be low
covers for porous absorbers

frequency response of the degree of transmission of a cover with holes:

![Graph showing the frequency response of transmission for a cover with holes. The x-axis is labeled 'normierte Frequenz' and the y-axis is labeled 'Transmissionsgrad'. The graph shows a downward trend as the frequency increases.]
covers for porous absorbers

- parameters of the cover:
 - ε: ratio of the area of the holes relative to the area of the panel in %
 - hole diameter r [mm]
 - panel thickness l [mm]
 - end correction $2 \cdot \Delta l$ [mm]
 - effective panel thickness $l^* = l + 2 \cdot \Delta l$ [mm]

- calculation of the frequency $f_{0.5}$ for a degree of transmission of 0.5:

$$f_{0.5} \approx 1500 \frac{\varepsilon}{l^*}$$
covers for porous absorbers

- design of covers:
 - $f_{0.5}$ typically chosen "sufficiently high"
 - $f_{0.5}$ at specific frequency for mid frequency absorber