Acoustics I: fundamentals

Kurt Heutschi
2013-01-25
introduction
introduction

- Acoustics: science of sound
 - generation of sound
 - propagation of sound
 - effect of sound on humans and matter
- Sound:
 - mechanical oscillation with wave-like propagation
 - propagation in air
 - propagation in liquids
 - propagation in solid bodies
introduction

- frequency ranges:
 - infra-sound: $f < 20\text{Hz}$
 - listening range of humans: $20\text{Hz} < f < 20\text{kHz}$
 - ultra-sound: $f > 20\text{kHz}$
sound wave phenomena
sound wave phenomena

- geometrical spreading
- reflection
- scattering
- diffraction
- interference
wave phenomena: geometrical spreading
wave phenomena: reflection
wave phenomena: reflection - scattering
wave phenomena: diffraction
Fundamentals

introduction

sound wave phenomena

special topics in acoustics

history of acoustics

basic quantities

basic equations

wave equation

speed of sound

Helmholtz equation

types of waves

plane waves

spherical waves

cylindrical waves

superposition of point sources

reflection

specular reflection

Diffuse Reflexion

Doppler effect

sonic boom

standing waves

diffraction

dB-scale

signal prototypes

wave phenomena: interference
special topics
special topics

Theoretical acoustics analytical and numerical sound field calculations.

Nonlinear acoustics investigation of non-linear effects that occur at very high values of the field quantities (e.g. explosions or sonic booms).

Underwater acoustics sound propagation in water, sonar systems, seismic explorations.

Ultrasound non-destructive test procedures for materials, medical applications.

Vibrations vibrational behavior of bodies, sound radiation of vibrating structures.

Noise control description and modeling of noise sources, investigations on noise protection measures.
special topics

Room acoustics assessment, planing and prediction of sound fields in rooms.

Building acoustics noise control in buildings, transmission loss of building structures.

Electroacoustics transducers (microphones, loudspeakers), recording devices, public address systems, signal processing in acoustics.

Acoustics of the ear structure of the ear, characteristics of the ear, perception and subjective evaluation of noise.
history of acoustics
500 B.C.: Pythagoras: Begin of scientific acoustics:

- experiments with vibrating strings
- discovery of the relation between length of strings and pitch of the sound
- establishment of a relation between numbers and musical intervals
around 0

- Vitruv: De architectura: 10 books for architects:
 - complete manual for the design and the construction of buildings
 - description of possible acoustical problems in theaters:
 - no proper direct sound supply in the audience
 - too much reverberation
 - discrete reflections (echoes)
17th century

▶ 1630: Marin Mersenne:
 ▶ reliable measurement of speed of sound:
 ▶ boom of canons for optical and acoustical signals
 ▶ result: speed of sound independent of location
 and sound intensity = 450 m/s
 ▶ quantitative relation between pitch and frequency:
 ▶ experiments with vibrating strings
 ▶ usage of relation: pitch $\sim \frac{1}{\text{stringLength}}$
 ▶ usage of relation: pitch $\sim \sqrt{\text{tension}}$
 ▶ down-scaling till counting was possible

▶ 1670: Christian Huygens: understanding of sound as a wave phenomenon
 ▶ development of the concept of secondary sources
17th century

- 1673: Athanasius Kircher
 - introduction of rays as model of sound propagation in rooms
 - extended studies on the focussing effect of concave structures
18th century

- 1710: Isaac Newton
 - theoretical derivation of the speed of sound
 - value about 16 % too low due to wrong assumption of an isothermal process

- 1711: John Shore
 - invention of the tuning fork
 - → availability of a frequency standard!
18th century

- 1759: Leonhard Euler
 - publication of the one-dimensional wave equation for sound:

\[
\frac{\partial^2 p}{\partial x^2} = \frac{\rho_0}{\kappa P_0} \frac{\partial^2 p}{\partial t^2}
\]
18th century

- 1787: E. F. F. Chladni
 - investigations on the vibrational behavior of plates
 - visualizations with sand that accumulates in node lines → Chladni figures
19th century

- 1810
 - discovery of the adiabatic behavior of sound → varying temperature for fast processes
 - with this successful correct theoretical derivation of the speed of sound

- 1818: Augustin Fresnel
 - mathematically correct description of interference and diffraction
19th century

► 1843: G. S. Ohm
 ► Ohm’s law of acoustics:
 ► discovery of the ability of the ear to resolve complex tones in the fundamental (pitch) and the harmonics (tone color)
 ► insensitivity regarding the phase of the harmonics
19th century

- 1865: H. L. F. von Helmholtz
 - publication of the book: "Über die Tonempfindung"
 - milestone in knowledge about the human auditory system
 - Helmholtz resonator:
19th century

- 1877: Lord Rayleigh
 - publication of the book: ”Theory of Sound”
 - derivation of theoretical solutions for a variety of classical problems in acoustics
 - calculation of vibrating structures
 - radiation, diffraction and scattering of sound
 - the most relevant theoretical problems are solved!
19th century

- 1877: Thomas Alva Edison
- invention of the phonograph
- for the first time possible to store sound for later play-back
20th century

- **1900: Wallace C. Sabine**
 - founder of scientific room acoustics
 - investigations about reverberation of organ tones in the Lecture Room of the Fogg Art Museum in Harvard
 - development of the concept of reverberation time as a descriptor
 - discovery of the Sabine reverberation time formula:
 \[T = \frac{0.16 V}{A} \]
 - room acoustical design of Boston Symphony Hall
20th century

- 1920-1940: Harvey Fletcher (Bell Telephone Labs)
 - founder of psychoacoustics
 - investigations on loudness of complex sounds
 - discovery of masking effects
basic quantities
sound pressure

- atmosphere produces a static pressure due to the weight of the air mass
 - atmospheric pressure at sea level: around 1’000 hPa (1000 hectoPascal = 1000 Millibar = 100’000 Newton/m²)
 - around 12 Pa atmospheric pressure change per meter height difference
sound pressure

- device for pressure measurement:

\[U_c \sim \Delta x \]
sound pressure

sound pressure $p(t)$: fast pressure fluctuations (short term variations of the momentary air pressure):

$$p(t) = P(t) - P_{\text{atm}}$$

where

$P(t)$: momentary air pressure

P_{atm}: atmospheric pressure
sound pressure: typical numerical values

- normal speech in 1 m: $p_{\text{typ, rms}} \approx 0.1 \text{ Pa}$
- hearing threshold at 1 kHz: $p_{\text{min, rms}} \approx 2 \times 10^{-5} \text{ Pa}$
- threshold of pain of the ear: $p_{\text{max, rms}} \approx 100 \text{ Pa}$
sound particle displacement

- local pressure variations propagate as sound waves
 - in air: longitudinal waves \rightarrow oscillations of air particles in propagation direction
 - on average the air particles remain at the same location \rightarrow sound does not transport matter but energy

- sound particle displacement ζ
sound particle displacement: numerical values

- normal speech in 1 m at 1 kHz: $\zeta_{\text{typ},\text{rms}} \approx 4 \times 10^{-8}$ m
- hearing threshold at 1 kHz: $\zeta_{\text{min},\text{rms}} \approx 8 \times 10^{-12}$ m
- threshold of pain of the ear at 1 kHz: $\zeta_{\text{max},\text{rms}} \approx 4 \times 10^{-5}$ m
sound particle velocity

sound particle velocity $\vec{v}(t)$:

$$|\vec{v}(t)| = \frac{d\zeta}{dt}$$

- sound particle velocity is a vector and points into direction of propagation.
sound particle velocity: typical numerical values

- normal speech in 1 m: $v_{\text{typ,rms}} \approx 2.5 \times 10^{-4}$ m/s
- hearing threshold at 1 kHz: $v_{\text{min,rms}} \approx 5 \times 10^{-8}$ m/s
- threshold of pain of the ear: $v_{\text{max,rms}} \approx 0.25$ m/s
sound intensity

- **sound intensity** describes the energy transport of a sound wave:
 - energy per second (= power) through an area of 1 m² (perpendicular to propagation direction)
- sound intensity is a vector that points in the direction of the sound particle velocity

average sound intensity $|\vec{I}|$:

$$|\vec{I}| = p\nu \quad [W/m^2]$$

note: phase between p and ν is relevant!
sound power

average sound power W through an area S:

$$W = \int_S \vec{I} \cdot d\vec{S} \quad [W]$$

integrand:
dot product of the intensity vector \vec{I} and the surface normal of the area element $d\vec{S}$

if the area S encapsulates a source completely, the sound power corresponds to the sound power of the source

\rightarrow demo: sound power
sound power

typical sound power values:

<table>
<thead>
<tr>
<th>sound source</th>
<th>sound power [W]</th>
</tr>
</thead>
<tbody>
<tr>
<td>human voice normal</td>
<td>7×10^{-6}</td>
</tr>
<tr>
<td>human voice max.</td>
<td>2×10^{-3}</td>
</tr>
<tr>
<td>violin, fortissimo</td>
<td>1×10^{-3}</td>
</tr>
<tr>
<td>loudspeaker (10 W el.)</td>
<td>0.1</td>
</tr>
<tr>
<td>jackhammer</td>
<td>1</td>
</tr>
<tr>
<td>organ, fortissimo</td>
<td>10</td>
</tr>
<tr>
<td>orchestra (75 instruments)</td>
<td>70</td>
</tr>
<tr>
<td>air plane Boeing 747</td>
<td>6’000</td>
</tr>
<tr>
<td>air plane FA-18</td>
<td>200’000</td>
</tr>
</tbody>
</table>
impedance

acoustic impedance Z:

$$Z = \frac{\ddot{p}}{\ddot{v}}$$

- \ddot{p}, \ddot{v}: complex amplitudes (pointer representation) contain
 - information about amplitude and
 - information about phase

- Z is usually a complex quantity with non-vanishing imaginary part
volume velocity

volume velocity Q:

$$Q = \int_S \vec{v} \cdot d\vec{S}$$

integrand:

dot product of sound particle velocity and the surface normal of the area element $d\vec{S}$
basic equations
<table>
<thead>
<tr>
<th>Introduction</th>
<th>Sound wave phenomena</th>
<th>special topics in acoustics</th>
<th>history of acoustics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundamentals</td>
<td>Basic equations</td>
<td>Basic quantities</td>
<td>Types of waves</td>
</tr>
<tr>
<td>Fundamentals</td>
<td>Wave equation</td>
<td>speed of sound</td>
<td>Helmholtz equation</td>
</tr>
<tr>
<td>Acoustics</td>
<td>Plane waves</td>
<td>Spherical waves</td>
<td>Cylindrical waves</td>
</tr>
<tr>
<td>Reflection</td>
<td>Diffuse reflection</td>
<td>Superposition of point sources</td>
<td>Diffraction</td>
</tr>
<tr>
<td>Standing Waves</td>
<td></td>
<td></td>
<td>dB-scale</td>
</tr>
<tr>
<td>Doppler Effect</td>
<td></td>
<td></td>
<td>Signal prototypes</td>
</tr>
<tr>
<td>Sonic Boom</td>
<td></td>
<td></td>
<td>Back</td>
</tr>
</tbody>
</table>
wave equation

- differential equation describing propagation of waves
- compact description of the physics of sound fields
wave equation: derivation

- finding: seeking for formulations that describe the relations between sound pressure and sound particle velocity
 - step 1: formulation of consequences of sound pressure for sound particle velocity
 - step 2: formulation of consequences of sound particle velocity for sound pressure
 - step 3: compilation
wave equation: $p \rightarrow \vec{v}$

on the sides of the cube $\Delta l \cdot \Delta l \cdot \Delta l$, p is given. Consequences for \vec{v}?
wave equation: $p \rightarrow \vec{v}$

- fundamental physical relation: Newton: $F_{\text{res}} = m \cdot a$
 - $F \leftrightarrow p$
 - $a \leftrightarrow \vec{v}$
wave equation: $p \rightarrow \vec{v}$

$$F_{\text{res}} = ma$$

in x-direction:

$$\Delta l^2 (p_{x0} - p_{x1}) = m \frac{\Delta v_x}{\Delta t}$$
wave equation: $p
ightarrow \vec{v}$

$m = \Delta l^3 \cdot \rho_0$

$\Delta l^2(p_{x0} - p_{x1}) = \Delta l^3 \cdot \rho_0 \frac{\Delta v_x}{\Delta t}$
Fundamentals

wave equation: $p \rightarrow \vec{v}$

\[\Delta l^2 (p_{x0} - p_{x1}) = \Delta l^3 \cdot \rho_0 \frac{\Delta v_x}{\Delta t} \quad | : \Delta l^3 \]

\[\frac{p_{x0} - p_{x1}}{\Delta l} = \rho_0 \frac{\Delta v_x}{\Delta t} \]

\[\frac{\partial p}{\partial x} = -\rho_0 \frac{\partial v_x}{\partial t}, \quad \frac{\partial p}{\partial y} = -\rho_0 \frac{\partial v_y}{\partial t}, \quad \frac{\partial p}{\partial z} = -\rho_0 \frac{\partial v_z}{\partial t} \]
wave equation: \(\vec{v} \rightarrow p \)

on the sides of the cube \(\Delta l \cdot \Delta l \cdot \Delta l \), \(\vec{v} \) is given. Consequences for \(p \)?
wave equation: \(\vec{v} \rightarrow p \)

- fundamental physical relation: (adiabatic processes):
 - Poisson’s law: \(P \cdot V^\kappa = constant \)
 - \(\Delta P \leftrightarrow p \)
 - \(\Delta V \leftrightarrow \vec{v} \)
wave equation: \(\vec{v} \rightarrow p \)

- question to pose: consequences of small change in volume
- change in volume \(\Delta V \) ↔ change in pressure \(\Delta P \)?
- small changes → linearization of Poisson’s law
wave equation: $\vec{V} \rightarrow p$

Poisson’s law reformulated:

$$(P_0 + \Delta P)(V_0 + \Delta V)^\kappa = P_0 V_0^\kappa$$

first term:

$$P_0 + \Delta P = P_0 \left(1 + \frac{\Delta P}{P_0}\right)$$

second term (ignoring the high order contributions of the series):

$$(V_0 + \Delta V)^\kappa \approx V_0^\kappa + \Delta V \kappa V_0^{\kappa-1} = V_0^\kappa \left(1 + \kappa \frac{\Delta V}{V_0}\right)$$
wave equation: $\vec{V} \rightarrow p$

approximation inserted in Poisson’s law:

$$P_0 \left(1 + \frac{\Delta P}{P_0}\right) V_0^\kappa \left(1 + \kappa \frac{\Delta V}{V_0}\right) \approx P_0 V_0^\kappa$$

$$\left(1 + \frac{\Delta P}{P_0}\right) \left(1 + \kappa \frac{\Delta V}{V_0}\right) \approx 1$$

$$\frac{\Delta P}{P_0} \approx -\kappa \frac{\Delta V}{V_0} - \kappa \frac{\Delta P}{P_0} \frac{\Delta V}{V_0}$$

$\Delta P \cdot \Delta V$ is very small, \rightarrow

$$\frac{\Delta P}{P_0} \approx -\kappa \frac{\Delta V}{V_0}$$
wave equation: \(\vec{v} \rightarrow p \)

- search for change \(\Delta V \) in volume caused by \(\vec{v} \)
- inserted in linearized form of Poisson’s law \(\rightarrow \Delta P \)
wave equation: $\vec{v} \rightarrow p$

volume at time t: $V(t) = \Delta l^3$

volume at time $t + \Delta t$:

$$V(t + \Delta t) = [\Delta l + \Delta t(v_{x1} - v_{x0})] \cdot [\Delta l + \Delta t(v_{y1} - v_{y0})] \cdot [\Delta l + \Delta t(v_{z1} - v_{z0})]$$
Fundamentals

wave equation: $\vec{V} \rightarrow p$

\[V(t + \Delta t) \approx \Delta l^3 + \Delta l^2 \Delta t(v_x_1 - v_x_0) + \]
\[+ \Delta l^2 \Delta t(v_y_1 - v_y_0) + \Delta l^2 \Delta t(v_z_1 - v_z_0) \]

change in volume during Δt:

\[\Delta V = V(t + \Delta t) - V(t) \approx \Delta l^2 \Delta t(v_x_1 - v_x_0) + \]
\[+ \Delta l^2 \Delta t(v_y_1 - v_y_0) + \Delta l^2 \Delta t(v_z_1 - v_z_0) \]
wave equation: $\vec{v} \rightarrow p$

inserted in $\frac{\Delta P}{P_0} \approx -\kappa \frac{\Delta V}{V_0}$:

\[
\Delta P \approx -\kappa P_0 \frac{\Delta l^2 \Delta t(v_{x1} - v_{x0})}{\Delta l^3} + \Delta l^2 \Delta t(v_{y1} - v_{y0}) + \Delta l^2 \Delta t(v_{z1} - v_{z0})
\]

\[
\frac{\Delta P}{\Delta t} \approx -\kappa P_0 \left(\frac{v_{x1} - v_{x0}}{\Delta l} + \frac{v_{y1} - v_{y0}}{\Delta l} + \frac{v_{z1} - v_{z0}}{\Delta l} \right)
\]
wave equation: $\vec{v} \rightarrow p$

$$\frac{\Delta P}{\Delta t} = -\kappa P_0 \left(\frac{v_{x1} - v_{x0}}{\Delta l} + \frac{v_{y1} - v_{y0}}{\Delta l} + \frac{v_{z1} - v_{z0}}{\Delta l} \right)$$

$$\frac{\partial p}{\partial t} = -\kappa P_0 \left(\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z} \right)$$

$$\frac{\partial p}{\partial t} = -\kappa P_0 \text{div}(\vec{v})$$
wave equation: compilation

\[A1 : \quad \frac{\partial p}{\partial x} = -\rho_0 \frac{\partial v_x}{\partial t} \]

\[A2 : \quad \frac{\partial p}{\partial y} = -\rho_0 \frac{\partial v_y}{\partial t} \]

\[A3 : \quad \frac{\partial p}{\partial z} = -\rho_0 \frac{\partial v_z}{\partial t} \]

\[B : \quad \frac{\partial p}{\partial t} = -\kappa P_0 \left(\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z} \right) \]

- derivative of Eq. A relative to \(x, y, z \)
- derivative of Eq. B relative to \(t \)
wave equation: compilation

derivatives of Eq. A relative to x, y, z:

$$A1 : \quad \frac{\partial^2 p}{\partial x^2} = -\rho_0 \frac{\partial^2 v_x}{\partial t \partial x} = \ast) - \rho_0 \frac{\partial^2 v_x}{\partial x \partial t}$$

$$A2 : \quad \frac{\partial^2 p}{\partial y^2} = -\rho_0 \frac{\partial^2 v_y}{\partial t \partial y} = \ast) - \rho_0 \frac{\partial^2 v_y}{\partial y \partial t}$$

$$A3 : \quad \frac{\partial^2 p}{\partial z^2} = -\rho_0 \frac{\partial^2 v_z}{\partial t \partial z} = \ast) - \rho_0 \frac{\partial^2 v_z}{\partial z \partial t}$$

$\ast)$ theorem of Schwarz
wave equation: compilation

derivative of Eq. B relative to t:

$$B : \rightarrow \frac{\partial^2 p}{\partial t^2} = -\kappa P_0 \left(\frac{\partial^2 v_x}{\partial x \partial t} + \frac{\partial^2 v_y}{\partial y \partial t} + \frac{\partial^2 v_z}{\partial z \partial t} \right)$$
wave equation: compilation

inserted \rightarrow wave equation:

$$\frac{\partial^2 p}{\partial t^2} = \frac{\kappa P_0}{\rho_0} \left(\frac{\partial^2 p}{\partial x^2} + \frac{\partial^2 p}{\partial y^2} + \frac{\partial^2 p}{\partial z^2} \right)$$

or

$$\frac{\partial^2 p}{\partial x^2} + \frac{\partial^2 p}{\partial y^2} + \frac{\partial^2 p}{\partial z^2} = \frac{\rho_0}{\kappa P_0} \frac{\partial^2 p}{\partial t^2}$$
wave equation

wave equation:

► is the fundamental equation for the description of sound fields

► has to be fulfilled for each field point in time and space

► specification of specific problem introduces boundary conditions

► solution of a concrete sound field problem:
 ► search sound pressure field $p(x, y, z, t)$, that fulfills:
 ► the wave equation
 ► all boundary conditions

► note: wave equation made use of the linearized Poisson equation ⇒ not valid for large amplitudes!!
speed of sound
speed of sound

- sound field distortion propagates with the speed of sound c
- assumption: one-dimensional propagation:

 $p = f(x - ct)$ with f: arbitrary function

inserted in equation from above yields:

$$c = \sqrt{\frac{\kappa}{\rho_0}}$$

temperature dependency of c:

$$c \approx 343.2 \sqrt{\frac{T}{293}}$$
speed of sound: wave equation

insertion of c in wave equation:

$$\frac{\partial^2 p}{\partial x^2} + \frac{\partial^2 p}{\partial y^2} + \frac{\partial^2 p}{\partial z^2} = \frac{1}{c^2} \frac{\partial^2 p}{\partial t^2}$$

or

$$\Delta p = \frac{1}{c^2} \frac{\partial^2 p}{\partial t^2}$$

where

Δp: three-dimensional Laplace operator
Helmholtz equation
sinusoidal waves

- waves with sinusoidal time and space dependency are of special importance in the discussion of theoretical problems

- characterization:
 - amplitude
 - period length T or frequency $f = 1/T$, or angular frequency $\omega = 2\pi f$
 - wave length λ or wave number $k = 2\pi/\lambda$
sinusoidal waves

relation between λ, f, k, ω:

$$\lambda = \frac{c}{f}$$

$$k = \frac{\omega}{c}$$

<table>
<thead>
<tr>
<th>frequency f</th>
<th>wave length λ</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 Hz</td>
<td>3.4 m</td>
</tr>
<tr>
<td>1 kHz</td>
<td>34 cm</td>
</tr>
<tr>
<td>10 kHz</td>
<td>3.4 cm</td>
</tr>
</tbody>
</table>
sinusoidal waves: Helmholtz equation

complex writing for sinusoidal oscillations:

\[p(\text{location}, t) = \check{p}(\text{location}) \cdot e^{j\omega t} \]

where:
- \(\check{p} \): p, check
- \(\check{p}(\text{location}) \): complex, location dependent amplitude function
- \(e^{j\omega t} \): oscillation term

calculate \(\Delta p \) and \(\frac{\partial^2 p}{\partial t^2} \):

\[\Delta p = \Delta \check{p} e^{j\omega t} \]

\[\frac{\partial^2 p}{\partial t^2} = -\omega^2 \check{p} e^{j\omega t} \]
sinusoidal waves: Helmholtz equation

inserted in the wave equation:

$$\triangle p = \frac{1}{c^2} \frac{\partial^2 p}{\partial t^2}$$

yields the Helmholtz equation:

$$\triangle \tilde{p} + \frac{\omega^2}{c^2} \tilde{p} = 0$$

complex amplitude function \tilde{p} is exclusively a function of location \rightarrow *no explicit time variable*.
types of waves
plane waves
plane waves:

- excitation by a plane surface
- propagation in one direction only
- wave fronts = plane surfaces
- sound field variables p and \vec{v} depend on one coordinate only
- no divergence in space
- example:
 - excitation by a piston in a tube
plane waves

plane waves have to fulfill the one-dimensional wave equation:

\[\frac{\partial^2 p}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 p}{\partial t^2} \]

It can be shown that all solutions \(p(x, t) \) have the form

\[p(x, t) = f(ct \pm x) \]

where:

\(f(ct - x) \): wave traveling in positive \(x \)-direction (\(\rightarrow \) right)
\(f(ct + x) \): wave traveling in negative \(x \)-direction (\(\rightarrow \) left)
plane waves

sinusoidal plane wave (sound pressure) in x-direction in complex representation:

$$p(x, t) = \hat{p} e^{i(-kx + \phi)} e^{j\omega t}$$

where
- \hat{p}: amplitude of the wave
- ϕ: constant phase term

assumption for sound particle velocity:

$$v_x(x, t) = \tilde{v}_x e^{j\omega t}$$

where
- \tilde{v}_x: complex, location dependent amplitude function
plane waves

inserted in

\[\frac{\partial p}{\partial x} = -\rho_0 \frac{\partial v_x}{\partial t} \]

yields:

\[v_x(x, t) = \frac{1}{\rho c} p(x, t) \]

sound pressure and sound particle velocity are in phase, the ratio of their amplitudes (impedance) is

\[Z_0 = \rho c \]
spherical waves
spherical waves:

- excited by a point source
- propagate radially in all directions
- wave fronts are spherical surfaces
- due to symmetry reasons $\rightarrow p$ and \vec{v} depend on radius only
- divergence in space
- example:
 - radiation by a pulsating sphere
spherical waves

guess for sound pressure p as function of radius r:

$$p(r, t) = \frac{1}{r} \cdot p_{\text{plane.wave}} = \frac{1}{r} \hat{p} e^{j(-kr + \phi)} e^{j\omega t}$$

verification with help of the Helmholtz equation in spherical coordinates:

$$\frac{\partial^2 \tilde{p}}{\partial r^2} + \frac{2}{r} \frac{\partial \tilde{p}}{\partial r} + k^2 \tilde{p} = 0$$

insertion \rightarrow o.k.
spherical waves

with

\[\frac{\partial p}{\partial x} = -\rho_0 \frac{\partial v_x}{\partial t} \]

Newton

the sound particle velocity in radial direction is found as:

\[v_r(r, t) = p(r, t) \left(\frac{1}{\rho c} + \frac{1}{j\omega \rho r} \right) \]

for the impedance \(Z_s \) follows

\[Z_s = \rho c \frac{jkr}{1 + jkr} \]
spherical waves
impedance:

- proximity effect for sound particle velocity sensors (e.g. cardioid microphones)

\[r \to \infty \Rightarrow Z_{\text{spherical.wave}} = Z_{\text{plane.wave}} \]
sound pressure and sound power of a point source

sound power W of an omnidirectional point source:

$$W = \int_S \vec{I} \, dS$$

if S is the surface of a sphere with radius r, $|\vec{I}(r)|$ is constant:

$$W = I(r)4\pi r^2$$
sound pressure and sound power of a point source

the intensity $I(r)$ in distance r (in the far field) is:

$$I(r) = p_{\text{rms}}(r)v_{\text{rms}}(r)$$

in the far field holds:

$$Z = \frac{p(r)}{v(r)} = \rho_0 c$$

and therefore:

$$v(r) = \frac{p(r)}{\rho_0 c}$$
sound pressure and sound power of a point source

$$W = \frac{p_{\text{rms}}^2(r)}{\rho_0 c} 4\pi r^2$$
cylindrical waves
cylindrical waves:

- line source
- propagate radially perpendicular to the line source
- wave fronts are cylinder surfaces
- due to symmetry $\rightarrow p$ and \vec{v} depend on radius only
- divergence in space
- example:
 - corona noise of a high voltage power line
cylindrical waves

guess for sound pressure p as a function of radius r:

$$p(r, t) = \frac{1}{\sqrt{r}} \cdot p_{\text{planewave}} = \frac{1}{\sqrt{r}} \hat{p}e^{j(-kr+\phi)}e^{j\omega t}$$

verification with help of the Helmholtz equation in cylindrical coordinates

similar impedance curve as for spherical waves, near-field / far-field transition for somewhat smaller kr values.
overview:
wave types
overview: wave types

<table>
<thead>
<tr>
<th></th>
<th>plane wave</th>
<th>spherical wave</th>
<th>cylindrical wave</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>const</td>
<td>$\sim \frac{1}{r}$</td>
<td>$\sim \frac{1}{\sqrt{r}}$</td>
</tr>
<tr>
<td>Z</td>
<td>ρc</td>
<td>near/far</td>
<td>near/far</td>
</tr>
</tbody>
</table>
superposition of point sources
superposition of point sources

- determination of total sound pressure stemming from several point sources
- application of the superposition principle (linear acoustics assumed)
- coherent sources:
 - phase sensitive addition of sound pressure and sound particle velocity
 - \(p_{\text{tot}} = \sum_{i=1}^{N} p_i \)
 - \(\rightarrow \) constructive and destructive interference possible
- incoherent sources:
 - energetic summation \(\rightarrow \) sum of the mean square values of sound pressure or sound particle velocity
 - \(p_{\text{rms, tot}}^2 = \sum_{i=1}^{N} p_{\text{rms},i}^2 \)
superposition of point sources

- examples of coherent point sources?
- examples of incoherent point sources?
superposition of point sources

- examples of coherent sources:
 - several transformers that emit 100 Hz due to magnetostriction
 - a pair of stereo loudspeakers emitting the same signal
- examples of incoherent sources
 - several machines in a factory building
 - cars on a road
incoherent point sources
incoherent point sources along a straight line
infinite line of incoherent point sources

situation:

contribution of source n:

$$p_{\text{rms},n}^2 = \frac{K}{a^2 + (nd)^2}$$

where

K: constant to describe the source strength
superposition of all contributions:

\[p_{\text{rms, tot}}^2 = \sum_{n=-\infty}^{+\infty} p_{\text{rms}, n}^2 = K \frac{1}{d^2} \sum_{n=-\infty}^{+\infty} \frac{1}{a^2 + n^2} \]

with:

\[\coth x = \frac{1}{x} + \frac{2x}{\pi^2} \sum_{n=1}^{+\infty} \frac{1}{x^2 + n^2} \]

follows:

\[p_{\text{rms, tot}}^2 = \frac{K \pi d}{a} \coth \left(\frac{\pi a}{d} \right) = \frac{K \pi}{ad} \coth \left(\frac{\pi a}{d} \right) \]
infinite line of incoherent point sources

discussion → two cases:

- $\frac{\pi a}{d}$ small (→ small distances)
 - $\coth \left(\frac{\pi a}{d} \right) \approx \frac{d}{\pi a}$
 - $p_{\text{rms,tot}}^2 \approx \frac{K}{a^2}$
 - $p_{\text{rms,tot}} \approx \frac{\sqrt{K}}{a}$
 - spherical wave behavior

- $\frac{\pi a}{d}$ large (→ large distances)
 - $\coth \left(\frac{\pi a}{d} \right) \approx 1$
 - $p_{\text{rms,tot}}^2 \approx \frac{K\pi}{ad}$
 - $p_{\text{rms,tot}} \approx \sqrt{\frac{K\pi}{d}} \cdot \frac{1}{\sqrt{a}}$
 - cylindrical wave behavior

transition (both approximations identical):

$$a = \frac{d}{\pi}$$
incoherent point sources distributed over an area
area of incoherent point sources

situation:

- incoherent point sources spread over a rectangular area
 - length: L
 - width: B

sound pressure as a function of distance a:

- $a < \frac{B}{\pi}$ behavior of a plane wave
- $\frac{B}{\pi} < a < \frac{L}{\pi}$ behavior of a cylindrical wave
- $\frac{L}{\pi} < a$ behavior of a spherical wave
coherent point sources along a straight line
infinite line of coherent point sources

- phase sensitive addition
- simplified calculation with help of Fresnel zones (sections with path length differences $< \lambda/2$)
- result: remaining contribution stems from half of the first zone \rightarrow only a small section is relevant
- for finite length line of point sources the line source behavior is valid up to large distances
reflection of sound waves at hard boundaries
reflection of sound waves

any impedance discontinuity results in a partial reflection of an incident sound wave

- specular reflection
 - occurs at plane, large and homogeneous (Z) surfaces
- diffuse reflection
 - occurs at structured or inhomogeneous (Z) surfaces
- scattering
 - occurs at small surfaces
specular reflection
specular reflection

FDTD simulation: plane surface
specular reflection

- plane, acoustically hard reflector \rightarrow specular reflection
- reflector \rightarrow boundary condition: $v_n = 0$
- solution: introduction of a mirror source:
 - reflected contribution seems to stem from the mirror source

\[d \star = \star 2d \]
diffuse reflection
diffuse reflection

FDTD simulation: structured surface
diffuse reflection

- directivity often idealized according to Lambert’s law:

\[I_{\text{refl.}} = I_0 \cos \phi \]
Doppler effect
Doppler effect:

- shift of frequency due to movement of source or receiver
- examples:
 - vehicles passing-by
 - simultaneous radiation of low and high frequencies by a loudspeaker membrane
 - Leslie cabinets of Hammond organs
Doppler effect

calculation of frequency shift:

- **Q**: source
 - moves with speed v_Q in x-direction
 - emits a tone of frequency f_0

- **E**: receiver
 - at rest, in distance d under angle ϕ
 - received frequency f is searched
Doppler effect

- **Q** emits a first maximum at time \(t = 0 \)
 - arrival at the receiver at time \(t = d/c \)
- **Q’** emits a second maximum at \(t = 1/f_0 \)
 - arrival at the receiver at \(t = 1/f_0 + d'/c \)
Doppler effect

time interval T between the two maxima at the receiver:

$$T = \left(\frac{1}{f_0} + \frac{d'}{c} \right) - \frac{d}{c}$$

frequency f at the receiver

$$f = \frac{1}{T} = \frac{1}{\frac{1}{f_0} - \frac{d-d'}{c}}$$

with d':

$$d' = \sqrt{d^2 - 2d v_Q T_0 \cos \phi + v_Q^2 T_0^2}$$
Doppler effect

for $\phi = 0$ the formula simplifies to:

$$d' = d - v_Q T_0$$

and the frequency at the receiver becomes:

$$f = f_0 \frac{c}{c - v_Q}$$
sonic boom
sonic boom

- sonic boom generated by sources with speed $v > c$
- examples:
 - air planes
 - projectiles
- high signal amplitudes due to wave front steepening
sonic boom: Mach’s cone

\[\sin \alpha = \frac{c}{v} \]
standing waves
standing waves

perfect standing waves occur in case of:

▶ superposition of plane waves traveling in opposite directions with
 ▶ equal frequency
 ▶ equal amplitude
standing waves

wave 1 →: \(p_1(x, t) = \hat{p} e^{j(\omega t - kx)} \)

wave 2 ←: \(p_2(x, t) = \hat{p} e^{j(\omega t + kx)} \)

\[
\begin{align*}
\overline{p}_{\text{tot}}(x, t) &= p_1(x, t) + p_2(x, t) \\
&= \hat{p} e^{j\omega t} (e^{-jkx} + e^{jkx}) \\
&= \hat{p} e^{j\omega t} (\cos(-kx) + j \sin(-kx) + \cos(kx) + j \sin(kx)) \\
&= \hat{p} e^{j\omega t} 2 \cos(kx)
\end{align*}
\]

- no longer a propagating wave
- harmonic oscillation with local \(\cos(kx) \)-modulation
 - maxima
 - minima
Standing waves

Example: plane wave is reflected at a hard surface (sound pressure is shown):

Movement of sound particles:
standing waves: $\lambda/4$ resonator

standing wave in front of a hard reflector

sound pressure:
standing waves: $\lambda/4$ resonator

tube open on one side, close on the other side:

- tube forces a pressure minimum at the open end
- introduces a local sound field discontinuity
- equalization by strong pressure increase inside the tube

example: maximum sensitivity of the human ear between 3...4 kHz due to a $\lambda/4$ resonance of the ear canal.
diffraction phenomena
diffraction phenomena

- sound waves are bent around corners (diffracted)
- sound reaches a receiver even in case of interrupted sight line
- diffraction process corresponds to low-pass filtering
diffraction phenomena: Maekawa’s formula

attenuation A_H due to an obstacle:

$$A_H = 10 \log \left(3 + 20 \frac{z}{\lambda/2} \right) \text{ [dB]}$$

where

λ: wavelength

z: path length difference source - edge of the barrier - receiver and source - receiver $z = d_1 + d_2 - d$
dB-scale

level quantities
dB-scale: level quantities

\[
\text{level} = 10 \cdot \log \left(\frac{\text{power}_X}{\text{power}_Y} \right) \quad [\text{dB}]
\]

acoustical quantities proportional to power:

- sound pressure square \(p^2 \)
- sound particle velocity square \(v^2 \)
- sound intensity \(I \)
- sound power \(W \)
dB-scale: level quantities

applications of the dB-scale:

- comparison of quantities
 - e.g. quantity X is 3 dB larger than quantity Y

- expression in relation to a reference
 - sound pressure level $L_p = 10 \cdot \log \left(\frac{p}{2 \cdot 10^{-5} \text{Pa}} \right)^2$
 - sound intensity level $L_I = 10 \cdot \log \left(\frac{I}{10^{-12} \text{W/m}^2} \right)$
 - sound power level $L_W = 10 \cdot \log \left(\frac{W}{10^{-12} \text{W}} \right)$
 - for plane waves: $L_p \approx L_I$
dB-scale: level quantities

consequences of the dB-scale:

- multiplication of quantities corresponds to an addition in the dB-scale
 - example: amplification of the power by a factor 2 corresponds to a level increase +3 dB
- audible range is mapped onto the sound pressure level interval L_p: 0...120 dB
- constant loudness variation corresponds to a constant dB step
dB-scale: level quantities

subtlety of the dB-scale:

0dB, +1dB, 0dB, +3dB, 0dB, +6dB, 0dB, +10dB, 0dB
dB-scale: level quantities

subtlety of the dB-scale:

<table>
<thead>
<tr>
<th>level difference</th>
<th>perception</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 2 dB</td>
<td>not audible</td>
</tr>
<tr>
<td>2...4 dB</td>
<td>just audible</td>
</tr>
<tr>
<td>5...10 dB</td>
<td>clearly audible</td>
</tr>
<tr>
<td>> 10 dB</td>
<td>very convincing</td>
</tr>
</tbody>
</table>
dB-scale: level quantities

<table>
<thead>
<tr>
<th>sound source</th>
<th>sound pressure level</th>
</tr>
</thead>
<tbody>
<tr>
<td>speech in 2 m</td>
<td>60 dB</td>
</tr>
<tr>
<td>road traffic in 10 m *</td>
<td>70 dB</td>
</tr>
<tr>
<td>air plane in 100 m</td>
<td>120 dB</td>
</tr>
</tbody>
</table>

* 1000 vehicles/h, 80 km/h
dB-scale: level quantities

calculations with decibel quantities:

- caution: logarithmic quantity
- multiplication of underlying physical quantities \rightarrow addition of dB quantities
- summation of underlying physical quantities \rightarrow addition of the linear quantities
 - $L_{W,\text{tot}} = 10 \log (10^{0.1L_{W1}} + 10^{0.1L_{W2}})$
dB-scale: level quantities

Calculations with decibel quantities: important values of the \log_{10} function:

<table>
<thead>
<tr>
<th>a</th>
<th>$\log(a)$</th>
<th>$10 \log(a)$</th>
<th>$10 \log(a^2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>-2</td>
<td>-20</td>
<td>-40</td>
</tr>
<tr>
<td>0.1</td>
<td>-1</td>
<td>-10</td>
<td>-20</td>
</tr>
<tr>
<td>0.5</td>
<td>≈ -0.3</td>
<td>≈ -3</td>
<td>≈ -6</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>≈ 0.3</td>
<td>≈ 3</td>
<td>≈ 6</td>
</tr>
<tr>
<td>3</td>
<td>≈ 0.5</td>
<td>≈ 5</td>
<td>≈ 10</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>100</td>
<td>2</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>1000</td>
<td>3</td>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td>10000</td>
<td>4</td>
<td>40</td>
<td>80</td>
</tr>
</tbody>
</table>
distance dependency of prototype waves in dB scale

sound pressure or intensity variation for a doubling of distance:

<table>
<thead>
<tr>
<th></th>
<th>plane wave</th>
<th>spherical wave</th>
<th>cylindrical wave</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔL</td>
<td>0 dB</td>
<td>-6 dB</td>
<td>-3 dB</td>
</tr>
</tbody>
</table>
signal prototypes
pure tone: time course and spectrum

- Time course.png
- Spectrum.png

pure tone 440 Hz
complex tonal sound: time course and spectrum

complex tonal sound 440 Hz + 3. + 5. harmonic
white noise: time course and spectrum

![Signal Time Course and Spectrum Graph](image)
pink noise: time course and spectrum

![Graph of pink noise time course and spectrum](image)
500 Hz octave band filtered noise: time course and spectrum
500 Hz third octave band filtered noise: time course and spectrum

sweeping third octave band noise
bang: time course and spectrum

![Graph showing time course and spectrum](image)
tone burst: time course and spectrum

bursts 440 Hz: 1, 2, 4, 8, 16, 32, 64, 128, 256 cycles
sweep: time course

signal prototypes
eth-acoustics-1