Acoustics II: recording technique

Kurt Heutschi
2013-01-18
stereo recording
Stereo recording: Patent Blumlein, 1931

- in a real listening experience in a room, different contributions are perceived with directional information → allows for a separation of direct sound and reflections
- thus a suitable recording method has to provide directional information
- two channels are needed to offer different signals to the two ears
Stereo recording: principle

- evaluation of directional information by the ear:
 - level differences between the ear drums left and right
 - time of arrival differences between the ear drums left and right
Stereo recording: principle

directional information due to level differences at the ear drums
Stereo recording: principle

directional information due to time of arrival differences at the ear drums
Stereo recording: principle

- **direct** stereo signal recording:
 - two appropriately mounted microphones:
 - intensity stereophony
 - time of arrival stereophony
 - mixed stereophony

- **indirect** stereo signal recording:
 - signals of several distributed directional microphones summed up to left and right stereo channels
intensity stereophony
XY arrangement
XY arrangement

- two cardioid capsules
- orientation: 65° each, relative to frontal direction (opening angle: 130°)
- capsules close to each other
XY arrangement

correct

wrong
XY arrangement

- **advantage:**
 - good suppression of sources on the rear side

- **disadvantage:**
 - frontal direction does not correspond to microphone axis → non ideal "off-axis" frequency response
MS arrangement
MS arrangement

- one omni (or a cardioid) and one figure of eight microphone
 - omni → Mid
 - figure of eight → Side
- capsules close to each other
MS arrangement

- stereo signal is formed as:
 - left = M + $\beta \cdot S$
 - right = M - $\beta \cdot S$
- β adjusts the opening angle
MS arrangement

- advantages:
 - opening angle can be adjusted electronically
 - with high quality storing media, recording of M and S for later formation of left and right (opening angle remains adjustable)

- disadvantage:
 - high sensitivity for rear sided sources
Blumlein arrangement
Blumlein arrangement

- two figure of eight microphones
- 90° different orientation
- capsules close to each other
Blumlein arrangement

- advantages: -
- disadvantages:
 - high sensitivity for rear sided sources
 - low frequency weakness of figure of eight microphones
time of arrival stereophony
AB arrangement
AB arrangement

- two omnis
- laterally separated by typically 20 cm
AB arrangement

- increased lateral separation for larger distances to the source
- often used for recording of classical music in churches and concert halls
- advantage:
 - omnidirectional microphones with excellent properties available
- disadvantage:
 - high sensitivity for rear sided sources
mixed stereophony
ORTF arrangement
ORTF arrangement

- two cardioid microphones
- orientation: 55° each, relative to frontal direction (opening angle: 110°)
- laterally separated by 17 cm
ORTF arrangement

▶ advantage:
 ▶ phantom sources distributed homogeneously on stereo basis

▶ disadvantage:
 ▶ frontal direction does not correspond to microphone axis → non ideal "off-axis" frequency response
Jecklin disc
Jecklin disc

- two omnis
- laterally separated by 17 cm
- separating disc of 30 cm in diameter in between
Jecklin disc
Jecklin disc

- **advantage:**
 - omnidirectional microphones with excellent properties available

- **disadvantages:**
 - problem of comb filter in case of insufficient absorption of the disc
 - high sensitivity for rear sided sources
Binaural stereophony
Binaural stereophony

- two omnis
- mounted at position of ear drums in an artificial head
Binaural stereophony

- correct frequency response distortions due to outer ear and ear canal (head related transfer function)
- suitable for play-back by headphones, optimal if headphone is compensated for transfer function
- headphone-membrane → ear drum
- excellent reproduction of spacial impression
- however, front-back localization not always perfect (visual information is missing)
- caution: unsuitable for reproduction by loudspeakers (head related transfer function occurs two times)
Binaural stereophony: localization test
(JAES, vol. 47, p.83, 1999)

- experiment:
 - listener sitting in a highly damped room, RT about 0.3 sec
 - 19 visible loudspeakers arranged around listener
 - listener has to identify active speaker → localization accuracy

- procedure:
 - phase 1: reproduction by real speakers
 - phase 2: binaural recording with artificial head and reproduction by headphones
Binaural stereophony: localization test

results for loudspeaker reproduction:
Binaural stereophony: Ortungstest
results for binaural recording and headphone reproduction:
demo: spacial mapping of various recording arrangements
demo: spacial mapping

(CD: Stereo Microphone Technique)

<table>
<thead>
<tr>
<th>3 m</th>
<th>1.5 m</th>
</tr>
</thead>
</table>

20 cm

clicks radiated by one speaker after the other
Demo: spatial mapping

various stereo microphone arrangements:

A B C D
Demo: spacial mapping

various stereo microphone arrangements:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>XY</td>
</tr>
<tr>
<td>B</td>
<td>AB</td>
</tr>
<tr>
<td>C</td>
<td>MS</td>
</tr>
<tr>
<td>D</td>
<td>ORTF</td>
</tr>
</tbody>
</table>
microphone positioning
microphone positioning

- a recording aims at capturing:
 - the source signal
 - information about the room

- strategies:
 - stereo microphone pair
 - stereo microphone pair + room microphone
 - distributed microphones
Stereo microphone pair

▶ find optimal distance to source!
▶ if distance is too small:
 ▶ recording too dry
 ▶ extended source (orchestra) if mapped inhomogeneously
▶ if distance is too large:
 ▶ recording too reverberant and too blurry
▶ optimal distance for strength direct sound \(\approx \) strength diffuse sound
 ▶ \(\rightarrow \) critical distance
▶ caution: sources or microphones with pronounced directivity enlarge the critical distance
Stereo microphone pair + room microphone

- stereo microphone pair relatively close to the source
- room microphone (omni) in the diffuse field
- balance between direct and diffuse sound adjustable during mixing
Distributed microphones

- separate microphones for each instrument or group of instruments
- left-right mapping with help of panorama control
- distance mapping by adding artificial reverberation
- difficulties:
 - interferences between the signals of different microphones (large level differences between mics necessary)
 - early reflections at surfaces → comb-filter effects (solution: pressure zone microphones)
demo microphone positioning
demo microphone positioning

(CD: United Music of Marantz I)

different microphone arrangements:

A
B
C
demo microphone positioning

(CD: United Music of Marantz I)
different microphone arrangements:

<table>
<thead>
<tr>
<th></th>
<th>XY</th>
<th>Jecklin</th>
<th>distributed microphones</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
surround sound recordings
surround sound recordings

- capabilities of Stereo:
 - generation of phantom sources within a listening angle of 60°
 - good direct sound reproduction of the sources on stage

- capabilities of Surround:
 - listening angle: 360°
 - good direct sound reproduction of the sources on stage
 - reproduction of rear lateral reflections \rightarrow accurate room information
surround sound recordings: format

- most common format: 5.1 (developed for movie theatres)
 - 6 discrete channels:
 - Front Left
 - Front Right
 - Front Middle
 - Rear (Surround) Left
 - Rear (surround) Right
 - LFE (low frequency effects: 20...120 Hz)
Surround sound recordings: perspectives

- direct/ambient
 - perspective of listener in the audience

microphone arrangement:
 - front channels: stereo microphone pair
 - surround channels: more distant omnis or cardioids oriented to rear side
Surround sound recordings: perspectives

- inside the band
 - musicians perspective

- microphone arrangement:
 - front channels: distributed microphones
 - surround channels: distributed microphones for each group of instruments
assessment of recording quality
assessment of recording quality

- Guideline: EBU (European Broadcasting Union), Tech. 3286, 1997
- assessment categories:
 - Spatial impression
 - Stereo impression
 - Transparency
 - Sound balance
 - Timbre
 - Freedom from noise and distortions
assessment of recording quality

- **Spatial Impression** (reproduction of plausible environment):
 - homogeneity of spatial sound
 - reverberance
 - acoustical balance
 - apparent room size
 - depth perspective
 - sound color of reverberation

- sound example criterion **reverberance**:
 - too dry
 - too reverberant
 - appropriate
assessment of recording quality

- **stereo impression** (reproduction of correct and plausible directions of the sources):
 - directional balance
 - stability
 - sound image width
 - location accuracy

- **sound example** *sound image width*:
 - too narrow
 - too wide
 - appropriate
assessment of recording quality

- **transparency** (reproduction can be heard in all its details):
 - sound source definition
 - time definition
 - intelligibility

- sound example: *sound source definition*:
 - muddy
 - clear
assessment of recording quality

- **sound balance** (all sources appear with comparable loudness):
 - loudness balance
 - dynamic range

- sound example: *loudness balance*:
 - trombone too weak
 - trombone too loud
 - trombone appropriate
assessment of recording quality

- **timbre** (correct reproduction of the characteristics of the sources):
 - sound colour
 - sound attack

- sound example: *sound attack*:
 - attacks are not precise
 - precise attacks
assessment of recording quality

- **freedom from noise and distortions** (no audible noise components or distortions):
 - sound example *noise*:
 - noise by audience