PA systems

introduction
PA speech
maximal amplification
focusing loudspeakers
suppression of feed-back
speech intelligibility
intelligibility
intelligibility of syllables
articulation Loss
speech transmission index
Deutlichkeitgrad D50
localization
types of PA systems
centralized PA systems
distributed PA systems
summary
PA music
back

Acoustics II:
public address systems

Kurt Heutschi
2013-01-18
introduction
introduction

- aim:
 - generation of sufficiently high sound pressure ($S/N > 10\ldots25\ \text{dB}$) in the audience area
 - homogeneous level distribution ($\pm 3\ \text{dB}$)
 - good direct sound supply
 - suitable audio quality

- means:
 - loudspeaker
introduction

▶ applications:
 ▶ source is too weak
 ▶ source is too omnidirectional (strong excitation of diffuse field in a room)
 ▶ non-acoustical source
PA systems for speech
PA systems for speech:

- auditoria
- churches
- public buildings (e.g. emergency announcements ...)

introduction

maximal amplification

focusing loudspeakers

suppression of feed-back

speech intelligibility

intelligibility of syllables

articulation Loss

speech transmission index

Deutlichkeitsgrad D50

localization

types of PA systems

centralized PA systems

distributed PA systems

summary

PA music

back
PA systems for speech: speech signals

- sound pressure level of speech in 1m distance: → 65 dB(A)
- spectrum:

![Chart](image)
relevance of third-octave bands for intelligibility: [Bar chart showing the relevance of different frequency bands for intelligibility.]
PA systems for speech: necessary frequency range

- suitably adjusted system frequency response for speech:
PA systems for speech: elements

- microphone
- amplifier
- loudspeaker
- room
PA systems for speech: feed-back

- feed-back loudspeaker → microphone:
 - amplitude response distortions
 - temporal stretching of transient signals
 - possible instability (whistling sound)

- target: about 10 dB margin to the point of instability
maximal amplification
maximal amplification: system analysis

n identical loudspeakers

- microphone gets direct sound from L_1 and diffuse sound from $L_2 \ldots L_n$
- listener gets direct sound from L_1 and diffuse sound from $L_2 \ldots L_n$
maximal amplification: system analysis

idealizations:

▶ direct sound:
 ◀ point source behavior $\rightarrow p \sim \frac{1}{r} \rightarrow -6$ dB per doubling of distance

▶ diffuse sound:
 ◀ constant in the room
maximal amplification: block diagram

G3 transfer speaker \rightarrow microphone

G2 transfer microphone signal \rightarrow listener (by loudspeaker)

G1 feed-back microphone signal \rightarrow microphone signal (by loudspeaker) ≤ 0.1
maximal amplification

maximal amplification \(G_{\text{MAX}} = \frac{p_{E, \text{withLS}}^2}{p_{E, \text{withoutLS}}^2} \)

with \(G1 = 0.1 \) follows for \(G_{\text{MAX}} \)

\[
G_{\text{MAX}} = 1 + 0.1 \frac{1}{d_{QM}^2} \left(\frac{1}{d_{LSE}^2} + n \frac{16\pi}{AQ} \right) \left(RW_{LS}(\gamma) RW_{M}(\beta) \frac{1}{d_{LSM}^2} + n \frac{16\pi}{AQ} \right)
\]

- \(d_{QM} \): distance source - microphone
- \(d_{LSE} \): distance loudspeaker - listener
- \(d_{QE} \): distance source - listener
- \(d_{LSM} \): distance loudspeaker - microphone
- \(n \): number of active loudspeakers
- \(A \): total absorption
- \(Q \): loudspeaker directivity (re. full solid angle)
- \(RW_{LS}(\gamma) \): loudspeaker directivity (attenuation in direction \(\gamma \))
- \(RW_{M}(\beta) \): microphone directivity (attenuation in direction \(\beta \))
maximal amplification

▶ for applications of interest holds:
 ▶ \(G_{\text{MAX}} \gg 1 \)
 ▶ reasonable usage
 ▶ \(\frac{1}{d_{\text{LSE}}^2} \gg n \frac{16\pi}{AQ} \)
 ▶ distance speaker - listener \(<\) critical distance with consideration of \(Q \)
 ▶ \(n \frac{16\pi}{AQ} \gg RW_{\text{LS}}(\gamma)RW_M(\beta)\frac{1}{d_{\text{LSM}}^2} \)
 ▶ feed-back dominated by diffuse field
maximal amplification

- from the above follows approximately:
 - \[G_{\text{MAX}} \sim \frac{1}{d_{QM}^2} \]
 - maximal amplification is inversely proportional to the square of the distance source - microphone
 - \[G_{\text{MAX}} \sim \frac{1}{n} \]
 - maximal amplification is inversely proportional to the number of loudspeakers
 - \[G_{\text{MAX}} \sim Q \]
 - maximal amplification is proportional to the loudspeaker directivity
maximal amplification: example

- auditorium:
 - V: 2000 m3
 - RT: 2 s \rightarrow A: 160 m2

- geometry of the system:
 - d_{QM}: 0.3 m
 - $d_{QE} = d_{LSE} = d_{LSM}$: 15 m

- loudspeaker directivity:
 - $RW_{LS}(\gamma)$: 1
 - Q: 1

- microphone directivity:
 - $RW_{M}(\beta)$: 1

- maximal amplification $= 6$ dB
maximal amplification: example

- maximal amplification = 6 dB is not sufficient
- need for more directional microphones and loudspeakers
focusing loudspeakers
horn speakers
horn speakers

▶ properties:
 ▶ increased efficiency due to better impedance matching
 ▶ controlled directivity
horn speakers

- example mid-range horn, 70x40x40cm:
column speakers
column speakers

- arrangement of several chassis in a row
- focusing in direction of the row

Example: column of length 1.3 m with 9 chassis:

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>Q</th>
<th>250 Hz</th>
<th>500 Hz</th>
<th>1 kHz</th>
<th>2 kHz</th>
<th>4 kHz</th>
<th>8 kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>8</td>
<td>11</td>
<td>18</td>
<td>22</td>
<td>18</td>
<td>45</td>
<td></td>
</tr>
</tbody>
</table>
column speakers

- reducing the extreme frequency dependency of Q by
 - segmentation and tilting
 - each chassis gets individual signal
electronically steered column speakers: Line arrays

- column speakers with
 - individually steered chassis (delay, frequency response)
- focused radiation in the vertical plane
- horizontal directivity determined by chassis characteristics
- advantages compared to conventional column speakers:
 - beam orientation adjustable by electrical means → vertical mounting possible
 - radiation characteristics can be optimized (frequency response)
electronically steered column speakers: Line arrays

- sound field of a row of point sources:
 - 16 chassis
 - 0.5 m separation
 - 500 Hz
 - all chassis in phase
electronically steered column speakers:

Line arrays

- sound field of a row of point sources:
 - 16 chassis
 - 0.5 m separation
 - 500 Hz
 - each chassis with individual delay
electronically steered column speakers: Line arrays

- behavior of a row of point sources:
 - focusing by interference
 - line source distance dependency with approx. -3dB/distance doubling
 - limitation to low frequencies: focusing vanishes for array length $< \text{half first Fresnel zone}$
 - limitation to high frequencies: spatial aliasing for chassis separation $> \lambda$
line arrays: practical aspects

- high frequency horns to avoid necessity of many tweeters close to each other
- delay → adjustment of beam orientation (several simultaneous beams are possible!)
- apply frequency filtering (outer chassis radiate low frequencies only) → reduction of strong frequency dependency of Q
- bending of column at the lower end for an improved near-field supply (J-form)
line arrays: example
suppression of feed-back
wobbling
wobbling

- frequency modulation → permanently altering phase relation in the feed-back path
- original idea: 1928 Zwicker:
 - loudspeaker or microphone suspended on a oscillating pendulum
- digital solutions:
 - optimal modulation frequency: 4.5 Hz
 - optimal frequency variation: ± 5 Hz
 - gain: 5 dB
- problem: audible at low frequencies
frequency shifting
frequency shifting

- microphone signal is shifted in frequency by Δf prior to radiation

- consequence
 - smoothing of the peaks in the room transfer function

- digital solutions:
 - typical shift Δf: 5 Hz
 - gain: 6 dB
notch filter
notch filter

- for fix microphone and loudspeaker positions relatively few frequencies show possible instability
- suppression of these frequencies by narrow banded notch filters
- typical bandwidths 5 Hz
- for moving microphone positions: adaptive filters
estimation and compensation of the feed-back path
estimation and compensation of the feed-back path

example: subtraction filter:

- estimation of the feed-back path
- electronic simulation of the feed-back path by a digital filter
- subtraction of the signal that passed through the feed-back loop once
estimation and compensation of the feed-back path

\[\text{G}_1: \text{feed-back path} \]
\[\text{G}_1': \text{estimate of G}_1 \]
estimation and compensation of the feed-back path

- difficulty: estimation of feed-back path has to be accurate with respect to phase
 - systems are often time-variant (variable geometry, changing air temperature ...)
 - promising strategy: continuous measurement, e.g. with MLS at inaudible level
speech intelligibility
speech intelligibility: introduction
speech intelligibility: influencing factors

- signal/noise ratio
- reverberation time
- ratio of direct and diffuse sound (determined by total absorption and distance source - receiver)
- early reflections (comb filter effects for time of arrival differences of about 1 ms)
- late reflections (echoes for time of arrival differences of about 50 ms)
speech intelligibility: evaluation

- **subjective measure**
 - percentage of syllables correctly understood → intelligibility of syllables

- **objective measure**
 - Articulation Loss: ALcons
 - Speech Transmission Index: STI
 - Rapid Speech Transmission Index: RASTI
 - Speech Transmission Index PA: STI-PA
 - Deutlichkeitsgrad: D50
intelligibility of syllables
intelligibility of syllables

- basis of all measures
- subjective evaluation with speaker and panel of test persons
- determination of the ratio of correctly understood syllables
- conversion tables to translate intelligibility of syllables into intelligibility of words and into intelligibility of sentences
articulation Loss
articulation Loss

- speech intelligibility measure for prognosis:

\[
%AL_{\text{cons}} = \frac{200D^2RT^2N}{V \cdot Q}
\]

for \(D < 3.2r_H \)

\[
%AL_{\text{cons}} = 9RT
\]

for \(D \geq 3.2r_H \)

\(D \): distance source-receiver

\(RT \): reverberation time in range 500 Hz...2 kHz

\(V \): room volume

\(Q \): Q factor of loudspeaker

\(N \): ratio of loudspeaker power that contributes to diffuse field and to direct sound

\(r_H \): critical distance = \(\sqrt{\frac{QA}{16\pi}} \)

\(A \): total absorption
articulation Loss

- with help of $\%AL_{cons}$ formula \rightarrow dimensioning of a PA system

- significance of $\%AL_{cons}$ values:
 - $< 10\%$ \rightarrow very good speech intelligibility
 - $10\ldots15\%$ \rightarrow good speech intelligibility
speech transmission index
speech transmission index

- speech intelligibility measure for measurements and calculations
- simulation of speech signals by slowly amplitude modulated noise (modulation depth 100 %)
- calculation of intelligibility from resulting modulation depth at receiver
speech transmission index

- influence on modulation depth:
 - disturbing noise
 - reverberation
 - echoes
 - interference of several sources
speech transmission index

- measurement is possible without synchronization between sender and receiver → important advantage!
- variations:
 - RASTI
 - STI-PA
- very good intelligibility for:
 - STI, STI-PA, RASTI > 0.85
Deutlichkeitsgrad D50
Deutlichkeitsgrad D50

- speech intelligibility measure for measurements and calculations

- concept:
 - evaluation of precedence effect: signal energy within the first 50 ms after direct sound is helpful, later components are detrimental
 - calculation of the early/late energy ratio from the impulse response $h(t)$

\[
D50 = \frac{\int_0^{50ms} h^2(t)dt}{\int_0^{\infty} h^2(t)dt} \times 100\%
\]
Deutlichkeitsgrad D50

- calculation:
 - room acoustics simulation programs
- measurement:
 - impulse response measurement, e.g. with MLS
- very good intelligibility for D50 > 50%
localization
> due to the precedence effect there is chance to localize the original source and not the loudspeaker

- echo
- inaudible
- and correct
direct sound localization
localization

- dimensioning:
 - direct sound of original source has to arrive first at listener
 - installation of loudspeaker behind microphone but increased feed-back tendency
 - introduction of electronic delay
types of PA systems
centralized PA systems
centralized PA systems

- all loudspeakers located at one single position
 - horn speakers
 - speaker clusters
centralized PA systems

- advantages:
 - relative homogeneous level distribution can be achieved
 - localization controllable

- disadvantage:
 - is not working in halls that are too reverberant (RT > 2 sec)
distributed PA systems
distributed PA systems

- many distributed loudspeakers
 - mounted e.g. in ceiling
 - distributed column speakers (often seen in churches)
distributed PA systems

- **advantage:**
 - works in reverberant rooms and in rooms with low ceiling

- **disadvantages:**
 - inhomogeneous level distribution
 - possible problems in areas with supply from two different speakers (interferences)
 - localization seldom o.k.
summary: principles of a well designed PA system for speech

- high direct sound level
 - loudspeakers with high Q
 - small distances loudspeakers - listeners
summary: principles of a well designed PA system for speech

- low disturbing noise level
 - high transmission loss to outside sources
 - noise control of sources in the room itself (air conditioning system, seats, ...)
summary: principles of a well designed PA system for speech

- low diffuse sound level
 - short reverberation time
 - number of loudspeakers as small as possible
 - loudspeakers with high Q
 - orientation of loudspeaker main radiation direction towards audience areas
 - attenuation of bass frequencies
 - not relevant for speech intelligibility
 - higher reverberation times at low frequencies
 - Q of loudspeakers is usually small at low frequencies
summary: principles of a well designed PA system for speech

- avoid echoes
 - room acoustics:
 - no concave reflecting surfaces
 - avoid unstructured and reflecting parallel walls
 - suitable amount of absorption
summary: principles of a well designed PA system for speech

- avoid interferences
 - low number of loudspeakers
 - careful design of zones that get sound from two different loudspeakers
summary: principles of a well designed PA system for speech

- **homogeneous level distribution**
 - large distances loudspeaker - listeners
 - "tuned" loudspeaker arrays (line-arrays)
summary: principles of a well designed PA system for speech

- high maximal amplification
 - small distance speaker - microphone
 - directional microphones
 - large distance loudspeaker - microphone
 - focusing loudspeakers
 - no unnecessary open microphones → intelligent mixers
PA systems for music
PA systems for music: elements

- microphones and instrument pickups
- mixing consoles
 - main mix
 - monitor mix
- signal processing units
 - equalizers
 - compressors
 - various effects
- power amplifiers and loudspeakers
 - main mix \rightarrow audience
 - monitor mix \rightarrow performers on stage (or alternatively in-ear monitoring)
PA systems for music: necessary power

<table>
<thead>
<tr>
<th>performance type</th>
<th>W/person</th>
</tr>
</thead>
<tbody>
<tr>
<td>pop/light rock band indoor</td>
<td>8</td>
</tr>
<tr>
<td>hard rock or metal band indoor</td>
<td>12</td>
</tr>
<tr>
<td>pop/light rock band outdoors</td>
<td>16</td>
</tr>
<tr>
<td>hard rock or metal band outdoors</td>
<td>24</td>
</tr>
</tbody>
</table>

Note: W/person values are approximate and may vary depending on the specific requirements of the event.
PA systems for music: loudspeaker configurations

<table>
<thead>
<tr>
<th>power</th>
<th>configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 kW</td>
<td>2 subwoofers and 2 mid/high speakers</td>
</tr>
<tr>
<td>20 kW</td>
<td>4 subwoofers and 4 mid/high speakers</td>
</tr>
<tr>
<td>50 kW</td>
<td>special arrangements: subwoofers + line arrays</td>
</tr>
</tbody>
</table>
PA systems for music: open-air: annoyance in the neighborhood

- open-air concerts need assessment of possible annoyance in the neighborhood
- VDI standard → estimation of acoustically emitted power for various types of performances
eth-acoustics-2