Problem 1 \hspace{1cm} \textit{Reflection of Passband Signal}

Let \(x_{\text{PB}} \) and \(y_{\text{PB}} \) be real integrable passband signals that are bandlimited to \(W \) Hz around the carrier frequency \(f_c \). Let \(x_{\text{BB}} \) and \(y_{\text{BB}} \) be their baseband representations.

(i) Express the baseband representation of \(x_{\text{PB}} \) in terms of \(x_{\text{BB}} \).

(ii) Express \(\langle x_{\text{PB}}, y_{\text{PB}} \rangle \) in terms of \(x_{\text{BB}} \) and \(y_{\text{BB}} \).

Problem 2 \hspace{1cm} \textit{Symmetries of the FT}

Let \(x : \mathbb{R} \to \mathbb{C} \) be integrable, and let \(\hat{x} \) be its FT.

(i) Show that if \(x \) is a real signal, then \(\hat{x} \) is conjugate symmetric, i.e., \(\hat{x}(-f) = \hat{x}^*(f) \), for every \(f \in \mathbb{R} \).

(ii) Show that if \(x \) is purely imaginary (i.e., takes on only purely imaginary values), then \(\hat{x} \) is conjugate antisymmetric, i.e., \(\hat{x}(-f) = -\hat{x}^*(f) \), for every \(f \in \mathbb{R} \).

(iii) Show that \(\hat{x} \) can be written uniquely as the sum of a conjugate-symmetric function \(g_{\text{cs}} \) and a conjugate-antisymmetric function \(g_{\text{cas}} \). Express \(g_{\text{cs}} \) & \(g_{\text{cas}} \) in terms of \(\hat{x} \).

Problem 3 \hspace{1cm} \textit{Phase Shift}

Let \(x \) be a real integrable signal that is bandlimited to \(W \) Hz. Let \(f_c \) be larger than \(W \).

(i) Express the baseband representation of the real passband signal

\[
z_{\text{PB}}(t) = x(t) \sin(2\pi f_c t + \phi), \quad t \in \mathbb{R}
\]

in terms of \(x(\cdot) \) and \(\phi \).

(ii) Compute the Fourier Transform of \(z_{\text{PB}} \).
Problem 4

Purely Real and Purely Imaginary Baseband Representations

Let x_{PB} be a real integrable passband signal that is bandlimited to W Hz around the carrier frequency f_c, and let x_{BB} be its baseband representation.

(i) Show that x_{BB} is real if, and only if, \hat{x}_{PB} satisfies

$$\hat{x}_{PB}(f_c - \delta) = \hat{x}_{PB}(f_c + \delta), \quad |\delta| \leq \frac{W}{2}.$$

(ii) Show that x_{BB} is imaginary if, and only if,

$$\hat{x}_{PB}(f_c - \delta) = -\hat{x}_{PB}(f_c + \delta), \quad |\delta| \leq \frac{W}{2}.$$

Problem 5

Symmetry around the Carrier Frequency

Let x_{PB} be a real integrable passband signal that is bandlimited to W Hz around the carrier frequency f_c.

(i) Show that x_{PB} can be written in the form

$$x_{PB}(t) = w(t) \cos(2\pi f_c t), \quad t \in \mathbb{R}$$

where $w(\cdot)$ is a real integrable signal that is bandlimited to $W/2$ Hz if, and only if,

$$\hat{x}_{PB}(f_c + \delta) = \hat{x}_{PB}(f_c - \delta), \quad |\delta| \leq \frac{W}{2}.$$

(ii) Show that x_{PB} can be written in the form

$$x_{PB}(t) = w(t) \sin(2\pi f_c t), \quad t \in \mathbb{R}$$

for $w(\cdot)$ as above if, and only if,

$$\hat{x}_{PB}(f_c + \delta) = -\hat{x}_{PB}(f_c - \delta), \quad |\delta| \leq \frac{W}{2}.$$

Problem 6

Be sure you can justify and derive all the entries in Table 7.1.

© Amos Lapidoth, 2017 2