Problem 1

A Specific Signal

Let \(x \) be a real energy-limited passband signal that is bandlimited to \(W \) Hz around the carrier frequency \(f_c \). Suppose that all its complex samples are zero except for its zeroth complex sample, which is given by \(1 + i \). What is \(x \)?

Problem 2

Multiplying by a Carrier

Let \(x \) be a real energy-limited signal that is bandlimited to \(W/2 \) Hz, and let \(f_c \) be larger than \(W/2 \). Express the complex samples of \(t \mapsto x(t) \cos(2\pi f_c t) \) in terms of \(x \). Repeat for \(t \mapsto x(t) \sin(2\pi f_c t) \).

Problem 3

Orthogonal Passband Signals

Let \(x_{PB} \) and \(y_{PB} \) be real energy-limited passband signals that are bandlimited to \(W \) Hz around the carrier frequency \(f_c \). Under what conditions on their complex samples are they orthogonal?

Problem 4

The Convolution Revisited

Let \(x \) and \(y \) be real integrable passband signals that are bandlimited to \(W \) Hz around the carrier frequency \(f_c \). Express the complex samples of \(x \ast y \) in terms of those of \(x \) and \(y \).

Problem 5

Exploiting Orthogonality

Let the energy-limited real signals \(\phi_1 \) and \(\phi_2 \) be orthogonal, and let \(A^{(1)} \) and \(A^{(2)} \) be positive constants. Let the waveform \(X \) be given by

\[
X = \left(A^{(1)} X^{(1)} + A^{(2)} X^{(2)} \right) \phi_1 + \left(A^{(1)} X^{(1)} - A^{(2)} X^{(2)} \right) \phi_2,
\]

where \(X^{(1)} \) and \(X^{(2)} \) are unknown real numbers. How can you recover \(X^{(1)} \) and \(X^{(2)} \) from \(X \)?