Problem 1
A Specific Signal

Let x be a real energy-limited passband signal that is bandlimited to W Hz around the carrier frequency f_c. Suppose that all its complex samples are zero except for its zeroth complex sample, which is given by $1 + i$. What is x?

Problem 2
Multiplying by a Carrier

Let x be a real energy-limited signal that is bandlimited to $W/2$ Hz, and let f_c be larger than $W/2$. Express the complex samples of $t \mapsto x(t) \cos(2\pi f_c t)$ in terms of x. Repeat for $t \mapsto x(t) \sin(2\pi f_c t)$.

Problem 3
Orthogonal Passband Signals

Let x_{PB} and y_{PB} be real energy-limited passband signals that are bandlimited to W Hz around the carrier frequency f_c. Under what conditions on their complex samples are they orthogonal?

Problem 4
The Convolution Revisited

Let x and y be real integrable passband signals that are bandlimited to W Hz around the carrier frequency f_c. Express the complex samples of $x * y$ in terms of those of x and y.

Problem 5
Exploiting Orthogonality

Let the energy-limited real signals ϕ_1 and ϕ_2 be orthogonal, and let $A^{(1)}$ and $A^{(2)}$ be positive constants. Let the waveform X be given by

$$X = \left(A^{(1)} X^{(1)} + A^{(2)} X^{(2)} \right) \phi_1 + \left(A^{(1)} X^{(1)} - A^{(2)} X^{(2)} \right) \phi_2,$$

where $X^{(1)}$ and $X^{(2)}$ are unknown real numbers. How can you recover $X^{(1)}$ and $X^{(2)}$ from X?