Problem 1
Passband Signaling
Let \(f_0, T_s \) be fixed.

(i) Show that a signal \(x \) is a Nyquist Pulse of parameter \(T_s \) if, and only if, the signal \(t \mapsto e^{i2\pi f_0 t} x(t) \)
\(\) is such a pulse.

(ii) Show that if \(x \) is a Nyquist Pulse of parameter \(T_s \), then so is \(t \mapsto \cos(2\pi f_0 t) x(t) \).

(iii) If \(t \mapsto \cos(2\pi f_0 t) x(t) \) is a Nyquist Pulse of parameter \(T_s \), must \(x \) also be one?

Problem 2
The Self-Similarity Function of a Delayed Signal
Let \(u \) be an energy-limited signal, and let the signal \(v \) be given by \(v: t \mapsto u(t-t_0) \). Express the self-similarity function of \(v \) in terms of the self-similarity of \(u \) and \(t_0 \).

Problem 3
The Self-Similarity Function of a Frequency Shifted Signal
Let \(u \) be an energy-limited complex signal, and let the signal \(v \) be given by \(v: t \mapsto u(t) e^{i2\pi f_0 t} \) for some \(f_0 \in \mathbb{R} \). Express the self-similarity function of \(v \) in terms of \(f_0 \) and the self-similarity function of \(u \).

Problem 4
Relaxing the Orthonormality Condition
What is the minimal bandwidth of an energy-limited signal whose time shifts by even multiples of \(T_s \) are orthonormal? What is the minimal bandwidth of an energy-limited signal whose time shifts by odd multiples of \(T_s \) are orthonormal?

Problem 5
A Specific Signal
Let \(p \) be the complex energy-limited bandlimited signal whose FT \(\hat{p} \) is given by
\[
\hat{p}(f) = T_s (1 - |T_s f - 1|) 1\{0 \leq f \leq \frac{2}{T_s}\}, \quad f \in \mathbb{R}.
\]
(i) Plot $\hat{p}(\cdot)$.

(ii) Is $p(\cdot)$ a Nyquist Pulse of parameter T_s?

(iii) Is the real part of $p(\cdot)$ a Nyquist Pulse of parameter T_s?

(iv) What about the imaginary part of $p(\cdot)$?

Problem 6
Mapping a Discrete-Time Stationary SP

Let (X_ν) be a stationary discrete-time SP, and let $g: \mathbb{R} \to \mathbb{R}$ be some arbitrary (Borel measurable) function. For every $\nu \in \mathbb{Z}$, let $Y_\nu = g(X_\nu)$. Prove that the discrete-time SP (Y_ν) is stationary.

Problem 7
Mapping a Discrete-Time WSS SP

Let (X_ν) be a WSS discrete-time SP, and let $g: \mathbb{R} \to \mathbb{R}$ be some arbitrary (Borel measurable) bounded function. For every $\nu \in \mathbb{Z}$, let $Y_\nu = g(X_\nu)$. Must the SP (Y_ν) be WSS?