Problem 1

Transforming an Energy-Limited Signal

Let \(v \) be an energy-limited signal of self-similarity function \(R_{vv} \), and let \(p \) be the signal

\[
p(t) = A v(\alpha t), \quad t \in \mathbb{R},
\]

where \(A \) and \(\alpha \) are real numbers (not necessarily positive) and \(\alpha \neq 0 \). Is \(p \) energy-limited? If so, relate its self-similarity function \(R_{pp} \) to \(R_{vv} \).

Problem 2

Bandlimited Signals and Bandwidth

For every \(\lambda \in (0, 1) \) let \(\hat{g}_\lambda \) be the Inverse Fourier Transform of \(g_\lambda \), where

\[
g_\lambda(f) = \begin{cases}
0 & \text{if } f < -\lambda W \text{ or } f > (1 - \lambda)W, \\
\frac{1}{\lambda W}(f + \lambda W) & \text{if } -\lambda W \leq f \leq 0, \\
\frac{1}{(1-\lambda)W}(f - (1 - \lambda)W) & \text{if } 0 < f \leq (1 - \lambda)W,
\end{cases} \quad f \in \mathbb{R},
\]

and where \(W \) is a fixed positive constant.

(i) Plot \(g_\lambda \) for a \(\lambda \) of your choice.

(ii) For which values of \(\lambda \), if any, is \(\hat{g}_\lambda \) bandlimited to \(W \) Hz?

(iii) For which values of \(\lambda \), if any, is \(\hat{g}_\lambda \) bandlimited to \(W/4 \) Hz?

(iv) What is the bandwidth of \(\hat{g}_\lambda \)? Express your answer in terms of \(\lambda \) and \(W \).

(v) Which \(\lambda \) minimizes the bandwidth of \(\hat{g}_\lambda \)? What is the corresponding minimal bandwidth?

Consider \(h_\lambda \) and \(u_\lambda \) defined for \(f_c > 0 \) by

\[
h_\lambda(f) = g_\lambda(f - f_c) + g_\lambda(f + f_c), \quad f \in \mathbb{R},
\]

and

\[
u_\lambda(f) = g_\lambda(|f| - f_c), \quad f \in \mathbb{R}.
\]

Let \(\hat{h}_\lambda \) and \(\hat{u}_\lambda \) be the Inverse Fourier Transforms of \(h_\lambda \) and \(u_\lambda \).
(vi) For which positive values of f_c is \tilde{h}_λ a passband signal around f_c? For which positive values of f_c is \tilde{u}_λ a passband signal around f_c?

For the remainder assume that \tilde{h}_λ and \tilde{u}_λ are passband signals around f_c.

(vii) What is the bandwidth of \tilde{h}_λ around f_c? What is the bandwidth of \tilde{u}_λ around f_c?

(viii) For which values of λ, if any, is \tilde{h}_λ a real passband signal around f_c? For which values of λ, if any, is \tilde{u}_λ a real passband signal around f_c?

Problem 3

Smoothing a PAM Signal

Let $(X(t))$ be the result of mapping the IID random bits D_1, \ldots, D_K to the real numbers X_1, \ldots, X_N using $\text{enc}: \{0, 1\}^K \rightarrow \mathbb{R}^N$ and then mapping these symbols to the waveform

$$X(t) = A \sum_{\ell=1}^{N} X_\ell g(t - \ell T_s), \quad t \in \mathbb{R},$$

where $A > 0$, where g is an energy-limited pulse shape, and where $T_s > 0$ is the baud period. Define the stochastic process $(Y(t))$ as

$$Y(t) = \frac{1}{17} \int_{t}^{t+17} X(\tau) \, d\tau, \quad t \in \mathbb{R}.$$

Can $(Y(t))$ be viewed as a PAM signal? If so, of what pulse shape?

Problem 4

Hypothesis Testing

Let the binary random variable H take on the values 0 and 1 equiprobably. Let W be a standard Gaussian 3-vector that is independent of H. Consider the problem of guessing H based on the observation Y, where conditional on $H = 0$,

$$Y = AW,$$

and conditional on $H = 1$,

$$Y = BW,$$

where A and B are the deterministic matrices

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \alpha & 0 \\ 0 & 0 & \beta \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 0 & 0 & \beta \\ 0 & \alpha & 0 \\ 1 & 0 & 0 \end{pmatrix},$$

and where α and β are positive real numbers and $\beta \neq 1$.

(i) If you must guess H based on exactly two out of the three components of

$$Y = (Y^{(1)}, Y^{(2)}, Y^{(3)})^T,$$

which two components would you choose in order to minimize the probability of error? Why?
(ii) Determine the conditional densities \(f_{Y|H=0} \) and \(f_{Y|H=1} \).

(iii) Find a one-dimensional sufficient statistic for guessing \(H \) based on \(Y \).

(iv) Describe an optimal decision rule for guessing \(H \) based on \(Y \).

(v) Compute the Bhattacharyya Bound on the optimal probability of error \(p^*(error) \).

(vi) Compute \(\lim_{\beta \to \infty} p^*(error) \).

Problem 5

A Guessing Rule

Let the received waveform \((Y(t)) \) be

\[
Y(t) = X s(t) + N(t), \quad t \in \mathbb{R},
\]

where \(s \) is a real, deterministic, integrable signal that is bandlimited to \(W \) Hz, \(X \) is a RV taking on the values \(\pm 1 \) equiprobably, and \((N(t))\) is noise.

(i) Consider a decoder that guesses “\(X = +1 \)” if \((Y \ast h)(0)\) is positive and guesses “\(X = -1 \)” otherwise. Here \(h \) is some real, deterministic, integrable signal that is bandlimited to \(W_c \) Hz. What is the probability of error of this decoder under the assumption that \((N(t))\) is white Gaussian noise of PSD \(N_0/2 \) with respect to \(\max\{W, W_c\} \)? Express your answer using the \(Q \)-function, \(s \), \(h \), and \(N_0 \).

(ii) Find an \(h \) (of whichever bandwidth you like) that minimizes the probability of error.

(iii) Evaluate the probability of error when \(s(t) = A \text{sinc}^2(Wt) \) for all \(t \in \mathbb{R} \) and the frequency response of \(h \) closely resembles that of an ideal unit-gain LPF of cutoff frequency \(W_c \). Which choice of \(W_c \) minimizes the probability of error?

(iv) Suppose now that \(X \) takes on the values \(\pm 1, \pm 3 \) equiprobably, and consider the guessing rule

\[
\text{Guess} = \begin{cases}
+3 & \text{if } (Y \ast h)(0) > \alpha, \\
+1 & \text{if } \alpha \geq (Y \ast h)(0) > 0, \\
-1 & \text{if } 0 \geq (Y \ast h)(0) > -\alpha, \\
-3 & \text{if } -\alpha \geq (Y \ast h)(0),
\end{cases}
\]

where \(\alpha \) is some real number. Assume that \((s \ast h)(0) > 0\). Which choice of \(\alpha \) minimizes the probability of error?

© Amos Lapidoth, 2016