Problem 1

Passband Signaling

(i) Define \(y : t \mapsto e^{i2\pi f_0 t} x(t) \). Then

\[y(0) = x(0), \]

(1)

and, since \(e^{i2\pi f_0 t} \neq 0 \) for every \(t \in \mathbb{R} \), it follows that for every \(\ell \in \mathbb{Z} \)

\[(y(\ell T_s) = 0) \iff (x(\ell T_s) = 0). \]

(2)

Consequently, by (1) and (2) \(y \) is a Nyquist pulse of parameter \(T_s \) if, and only if, \(x \) is a Nyquist pulse of parameter \(T_s \).

(ii) If \(x \) is a Nyquist pulse of parameter \(T_s \), then so is \(t \mapsto \cos(2\pi f_0 t) x(t) \) because the value of \(\cos(2\pi f_0 t) x(t) \) at \(t = 0 \) is that of \(x(t) \) and \(t = 0 \), and for every \(\ell \in \mathbb{Z} \)

\[x(\ell T_s) = 0 \implies \cos(2\pi f_0 \ell T_s) x(\ell T_s) = 0. \]

(3)

(iii) Even if \(t \mapsto \cos(2\pi f_0 t) x(t) \) is a Nyquist pulse of parameter \(T_s \), the signal \(x \) need not be one. For example, suppose that \(f_0 = \frac{1}{4T_s} \)

and that \(x \) is a Nyquist pulse of parameter \(2T_s \) but not of parameter \(T_s \). We show that although \(x \) is not a Nyquist pulse of parameter \(T_s \), the pulse \(t \mapsto \cos(2\pi f_0 t) x(t) \) is. Clearly the values at zero of \(x \) and \(t \mapsto \cos(2\pi f_0 t) x(t) \) are equal, so the fact that \(x \) is a Nyquist pulse (of parameter \(2T_s \)) implies that the value of \(t \mapsto \cos(2\pi f_0 t) x(t) \) at \(t = 0 \) is 1. If \(\ell \) is even but not zero, then the value of \(x \) at \(t = \ell T_s \) must be zero (because \(x \) is a Nyquist pulse of parameter \(2T_s \)) so the same must be true of \(t \mapsto \cos(2\pi f_0 t) x(t) \). And if \(\ell \) is odd, then the value of \(t \mapsto \cos(2\pi f_0 t) x(t) \) at \(t = \ell T_s \) must be zero because \(\cos(2\pi f_0 \ell T_s) \) is then zero.
Problem 2
The Self-Similarity Function of a Delayed Signal

\[R_{vv}(\tau) = \int_{-\infty}^{\infty} v(t + \tau) v^*(t) \, dt \]
\[= \int_{-\infty}^{\infty} u(t + \tau - t_0) u^*(t - t_0) \, dt \]
\[= \int_{-\infty}^{\infty} u(\tilde{t} + \tau) u^*(\tilde{t}) \, d\tilde{t} \]
\[= R_{uu}(\tau), \quad \tau \in \mathbb{R}, \]
where we have substituted \(\tilde{t} \) for \(t - t_0 \).

Problem 3
The Self-Similarity Function of a Frequency Shifted Signal

\[R_{vv}(\tau) = \int_{-\infty}^{\infty} v(t + \tau) v^*(t) \, dt \]
\[= \int_{-\infty}^{\infty} u(t + \tau) e^{i2\pi f_0(t+\tau)} u^*(t) \, dt \]
\[= e^{i2\pi f_0 \tau} \int_{-\infty}^{\infty} u(t + \tau) u^*(t) \, dt \]
\[= e^{i2\pi f_0 \tau} R_{uu}(\tau), \quad \tau \in \mathbb{R}. \]

Problem 4
Relaxing the Orthonormality Condition

The condition that the times-shifts of a signal \(\phi \) by \(\text{even} \) multiples of \(T_s \) are orthonormal, is equivalent to the condition that the time-shifts of \(\phi \) by \(\text{all integer multiples of twice} \cdot T_s \) are orthonormal. Thus, by Corollary 11.3.5, the minimum bandwidth of a signal whose time shifts by even multiples of \(T_s \) are orthonormal is \(1/(2(2T_s)) \), i.e.,

\[\frac{1}{4T_s}. \]

The condition that the times-shifts of a signal \(\phi \) by \(\text{odd} \) multiples of \(T_s \) are orthonormal, is equivalent to the condition that the time-shifts of \(t \mapsto \phi(t - T_s) \) by \(\text{even} \) multiples of \(T_s \) are orthonormal. Thus, for this condition to hold, the bandwidth of \(t \mapsto \phi(t - T_s) \) must be at least \(1/(4T_s) \). And since the bandwidth of \(\phi \) is the same as the bandwidth of \(t \mapsto \phi(t - T_s) \), the bandwidth of \(\phi \) must be at least \(1/(4T_s) \).

Problem 5
A Specific Signal

(i) See Figure 0.1.

(ii) Define

\[g(f) = T_s(1 - |T_s f - 1|)I\{0 \leq f \leq \frac{2}{T_s}\}, \quad f \in \mathbb{R}. \]

Then \(g \in L_1 \cap L_2 \) and, by Proposition 6.4.5 Part (i),

\[p(t) = \hat{g}(t), \quad t \in \mathbb{R}. \]
The assumptions of Theorem 11.3.2 are thus satisfied and \(p(\cdot) \) is a Nyquist Pulse of parameter \(T_s \) if, and only if,

\[
\lim_{J \to \infty} \int_{-1/(2T_s)}^{1/(2T_s)} \left| T_s - \sum_{j=-J}^{J} g \left(f + \frac{j}{T_s} \right) \right| df = 0. \tag{4}
\]

Since \(g \) is symmetric around \(1/T_s \), this condition is equivalent to

\[
\lim_{J \to \infty} \int_{0}^{1/(2T_s)} \left| T_s - \sum_{j=-J}^{J} g \left(f + \frac{j}{T_s} \right) \right| df = 0. \tag{5}
\]

On the interval \((0,1/(2T_s))\) only three terms contribute to the sum: the terms corresponding to \(j = 0 \) and \(j = \pm 1 \). Thus, to verify that \(\tilde{g} \) is a Nyquist Pulse of parameter \(T_s \) we only need to show that

\[
g \left(f - \frac{1}{T_s} \right) + g(f) + g \left(f + \frac{1}{T_s} \right) = T_s, \quad 0 < t < \frac{1}{2T_s}.
\]

This can be done graphically or algebraically.

(iii) Since \(p(\cdot) \) is a Nyquist Pulse of parameter \(T_s \), so is \(\text{Re}(p(\cdot)) \) because

\[
p(0) = 1 \implies \text{Re}(p(0)) = 1
\]

and

\[
p(\ell T_s) = 0, \; \ell \in \mathbb{Z} \setminus \{0\} \implies \text{Re}(p(\ell T_s)) = 0, \; \ell \in \mathbb{Z} \setminus \{0\}.
\]

(iv) The imaginary part of \(p(\cdot) \) is not a Nyquist pulse because

\[
\text{Im}(p(0)) = \text{Im}(1) = 0 \neq 1.
\]

Problem 6 \hspace{1cm} Mapping a Discrete-Time Stationary SP

We need to show that for every positive integer \(n \) and all choices of \(\eta, \eta' \in \mathbb{Z} \)

\[
(Y_\eta, \ldots, Y_{\eta+n-1}) \overset{D}{=} (Y_{\eta'}, \ldots, Y_{\eta'+n-1}). \tag{6}
\]

Since \((X_\nu)\) is stationary,

\[
(X_\eta, \ldots, X_{\eta+n-1}) \overset{D}{=} (X_{\eta'}, \ldots, X_{\eta'+n-1})
\]
and consequently,

$$(g(X_\eta), \ldots, g(X_{\eta+n-1})) \overset{\text{d}}{=} (g(X_{\eta'}), \ldots, g(X_{\eta'+n-1}))$$

(7)

due to a deterministic mapping (in this case the componentwise mapping $g(\cdot)$) to random vectors of equal law, results in random vectors of equal law. Since (Y_ν) is defined as $g(X_\nu)$ we see that (7) establishes (6).

Problem 7

Mapping a Discrete-Time WSS SP

No, (Y_ν) need not be WSS, as the following example shows. Suppose that

$$\ldots, X_{-3}, X_{-1}, X_1, X_3, \ldots$$

(8)

are drawn IID each taking on the values ± 1 equiprobably. Suppose that

$$\ldots, X_{-4}, X_{-2}, X_0, X_2, X_4, \ldots$$

are drawn independently of (8) and IID each taking on the values $-\sqrt{3}/2, 0, \sqrt{3}/2$ equiprobably.

We note that (X_ν) is WSS because — irrespective of whether ν is odd or even — $E[X_\nu] = 0$ and $\text{Var}[X_\nu] = 1$, and as to the covariance, $\text{Cov}[X_\nu, X_{\nu+\eta}]$ is zero whenever η is not zero, so

$$\text{Cov}[X_\nu, X_{\nu+\eta}] = 1\{\eta = 0\}, \quad \eta \in \mathbb{Z}.$$

Consider now the mapping $\xi \mapsto \xi^4$. We claim that the SP (Y_ν) defined by

$$Y_\nu = g(X_\nu), \quad \nu \in \mathbb{Z}$$

is not WSS. Indeed, (Y_ν) is deterministically 1 for ν odd and takes on the values $9/4$ and 0 with probabilities $2/3$ and $1/3$, respectively, when η is even. Thus, $E[Y_\nu]$ is 1 when ν is odd and is $3/2$ when ν is even, i.e., it does depend on ν, and (Y_ν) is not WSS.