Problem 1

Passband Signaling

(i) Define $y: t \mapsto e^{i 2\pi f_0 t} x(t)$. Then

$$y(0) = x(0),$$

(1)

and, since $e^{i 2\pi f_0 t} \neq 0$ for every $t \in \mathbb{R}$, it follows that for every $\ell \in \mathbb{Z}$

$$
\begin{aligned}
(y(\ell T_s) = 0) &\iff (x(\ell T_s) = 0).
\end{aligned}
$$

(2)

Consequently, by (1) and (2) y is a Nyquist pulse of parameter T_s if, and only if, x is a Nyquist pulse of parameter T_s.

(ii) If x is a Nyquist pulse of parameter T_s, then so is $t \mapsto \cos(2\pi f_0 t) x(t)$ because the value of $\cos(2\pi f_0 t) x(t)$ at $t = 0$ is that of $x(t)$ and $t = 0$, and for every $\ell \in \mathbb{Z}$

$$
\begin{aligned}
(x(\ell T_s) = 0) &\implies (\cos(2\pi f_0 \ell T_s) x(\ell T_s) = 0).
\end{aligned}
$$

(3)

(iii) Even if $t \mapsto \cos(2\pi f_0 t) x(t)$ is a Nyquist pulse of parameter T_s, the signal x need not be one. For example, suppose that $f_0 = \frac{1}{4T_s}$

and that x is a Nyquist pulse of parameter $2T_s$ but not of parameter T_s. We show that although x is not a Nyquist pulse of parameter T_s, the pulse $t \mapsto \cos(2\pi f_0 t) x(t)$ is. Clearly the values at zero of x and $t \mapsto \cos(2\pi f_0 t) x(t)$ are equal, so the fact that x is a Nyquist pulse (of parameter $2T_s$) implies that the value of $t \mapsto \cos(2\pi f_0 t) x(t)$ at $t = 0$ is 1. If ℓ is even but not zero, then the value of x at $t = \ell T_s$ must be zero (because x is a Nyquist pulse of parameter $2T_s$) so the same must be true of $t \mapsto \cos(2\pi f_0 t) x(t)$. And if ℓ is odd, then the value of $t \mapsto \cos(2\pi f_0 t) x(t)$ at $t = \ell T_s$ must be zero because $\cos(2\pi f_0 \ell T_s)$ is then zero.
Problem 2 \[R_{vv}(\tau) = \int_{-\infty}^{\infty} v(t + \tau) v^*(t) \, dt \]
\[= \int_{-\infty}^{\infty} u(t + \tau - t_0) u^*(t - t_0) \, dt \]
\[= \int_{-\infty}^{\infty} u(\tilde{t} + \tau) u^*(\tilde{t}) \, d\tilde{t} \]
\[= R_{uu}(\tau), \quad \tau \in \mathbb{R}, \]
where we have substituted \tilde{t} for $t - t_0$.

Problem 3 \[R_{vv}(\tau) = \int_{-\infty}^{\infty} v(t + \tau) v^*(t) \, dt \]
\[= \int_{-\infty}^{\infty} u(t + \tau) e^{i2\pi f_0(t+\tau)} u^*(t) e^{-i2\pi f_0 t} \, dt \]
\[= e^{i2\pi f_0 \tau} \int_{-\infty}^{\infty} u(t + \tau) u^*(t) \, dt \]
\[= e^{i2\pi f_0 \tau} R_{uu}(\tau), \quad \tau \in \mathbb{R}. \]

Problem 4 \[\text{Relaxing the Orthonormality Condition} \]
The condition that the times-shifts of a signal ϕ by \textit{even} multiples of T_s are orthonormal, is equivalent to the condition that the time-shifts of ϕ by \textit{all integer multiples of twice} T_s are orthonormal. Thus, by Corollary 11.3.5, the minimum bandwidth of a signal whose time shifts by even multiples of T_s are orthonormal is $1/(2(2T_s))$, i.e.,
\[\frac{1}{4T_s}. \]
The condition that the times-shifts of a signal ϕ by \textit{odd} multiples of T_s are orthonormal, is equivalent to the condition that the time-shifts of $t \mapsto \phi(t - T_s)$ by \textit{even} multiples of T_s are orthonormal. Thus, for this condition to hold, the bandwidth of $t \mapsto \phi(t - T_s)$ must be at least $1/(4T_s)$. And since the bandwidth of ϕ is the same as the bandwidth of $t \mapsto \phi(t - T_s)$, the bandwidth ϕ must be at least $1/(4T_s)$.

Problem 5 \[\text{A Specific Signal} \]
(i) See Figure 0.1.
(ii) Define \[g(f) = T_s(1 - |T_s f - 1|)1\left\{0 \leq f \leq \frac{2}{T_s}\right\}, \quad f \in \mathbb{R}. \]
Then $g \in \mathcal{L}_1 \cap \mathcal{L}_2$ and, by Proposition 6.4.5 Part (i),
\[p(t) = \hat{g}(t), \quad t \in \mathbb{R}. \]

© Amos Lapidoth, 2017 2
The assumptions of Theorem 11.3.2 are thus satisfied and \(p(\cdot) \) is a Nyquist Pulse of parameter \(T_s \) if, and only if,

\[
\lim_{J \to \infty} \int_{-1/(2T_s)}^{1/(2T_s)} \left| T_s - \sum_{j=-J}^{J} g \left(f + \frac{j}{T_s} \right) \right| df = 0. \tag{4}
\]

Since \(g \) is symmetric around \(1/T_s \), this condition is equivalent to

\[
\lim_{J \to \infty} \int_{0}^{1/(2T_s)} \left| T_s - \sum_{j=-J}^{J} g \left(f + \frac{j}{T_s} \right) \right| df = 0. \tag{5}
\]

On the interval \((0, 1/(2T_s))\) only three terms contribute to the sum: the terms corresponding to \(j = 0 \) and \(j = \pm 1 \). Thus, to verify that \(\tilde{g} \) is a Nyquist Pulse of parameter \(T_s \) we only need to show that

\[
g \left(f - \frac{1}{T_s} \right) + g(f) + g \left(f + \frac{1}{T_s} \right) = T_s, \quad 0 < t < \frac{1}{2T_s}.
\]

This can be done graphically or algebraically.

(iii) Since \(p(\cdot) \) is a Nyquist Pulse of parameter \(T_s \), so is \(\text{Re}(p(\cdot)) \) because

\[
(p(0) = 1) \Rightarrow (\text{Re}(p(0)) = 1)
\]

and

\[
(p(\ell T_s) = 0, \ \ell \in \mathbb{Z} \setminus \{0\}) \Rightarrow \left(\text{Re}(p(\ell T_s)) = 0, \ \ell \in \mathbb{Z} \setminus \{0\} \right).
\]

(iv) The imaginary part of \(p(\cdot) \) is not a Nyquist pulse because

\[
\text{Im}(p(0)) = \text{Im}(1)
\]

\[
= 0
\]

\[
\neq 1.
\]

Problem 6

Mapping a Discrete-Time Stationary SP

We need to show that for every positive integer \(n \) and all choices of \(\eta, \eta' \in \mathbb{Z} \)

\[
(Y_{\eta}, \ldots, Y_{\eta+n-1}) \not\equiv (Y_{\eta'}, \ldots, Y_{\eta'+n-1}). \tag{6}
\]

Since \((X_{\nu})\) is stationary,

\[
(X_{\eta}, \ldots, X_{\eta+n-1}) \not\equiv (X_{\eta'}, \ldots, X_{\eta'+n-1})
\]
and consequently,
\[
(g(X_\eta), \ldots, g(X_{\eta+n-1})) \overset{\text{d}}{=} (g(X_{\eta'}), \ldots, g(X_{\eta'+n-1}))
\]
(7)
because applying a deterministic mapping (in this case the componentwise mapping \(g(\cdot)\)) to random vectors of equal law, results in random vectors of equal law. Since \((Y_\nu)\) is defined as \(g(X_\nu)\) we see that (7) establishes (6).

Problem 7

Mapping a Discrete-Time WSS SP

No, \((Y_\nu)\) need not be WSS, as the following example shows. Suppose that
\[
\ldots, X_{-3}, X_{-1}, X_1, X_3, \ldots
\]
(8)
are drawn IID each taking on the values \(\pm 1\) equiprobably. Suppose that
\[
\ldots, X_{-4}, X_{-2}, X_0, X_2, X_4, \ldots
\]
are drawn independently of (8) and IID each taking on the values \(-\sqrt{3}/2, 0, \sqrt{3}/2\) equiprobably. We note that \((X_\nu)\) is WSS because — irrespective of whether \(\nu\) is odd or even — \(E[X_\nu] = 0\) and \(\text{Var}[X_\nu] = 1\), and as to the covariance, \(\text{Cov}[X_\nu, X_{\nu+\eta}]\) is zero whenever \(\eta\) is not zero, so
\[
\text{Cov}[X_\nu, X_{\nu+\eta}] = \mathbb{I}\{\eta = 0\}, \quad \eta \in \mathbb{Z}.
\]
Consider now the mapping \(\xi \mapsto \xi^4\). We claim that the SP \((Y_\nu)\) defined by
\[
Y_\nu = g(X_\nu), \quad \nu \in \mathbb{Z}
\]
is not WSS. Indeed, \((Y_\nu)\) is deterministically 1 for \(\nu\) odd and takes on the values \(9/4, 0\) with probabilities \(2/3\) and \(1/3\), respectively, when \(\eta\) is even. Thus, \(E[Y_\nu]\) is 1 when \(\nu\) is odd and is \(3/2\) when \(\nu\) is even, i.e., it does depend on \(\nu\), and \((Y_\nu)\) is not WSS.