Problem 1

On the Achievable Rate

![Diagram of two parallel channels](https://example.com/diagram.png)

The second channel, W_2, can be considered to consist of two parallel channels W_1 as shown in the figure above, i.e., one use of W_2 corresponds to two independent uses of W_1.

a) Consider a sequence of codes $\{C_1\}_n$ of length n and achievable rate R for W_1. Now consider a sequence of codes $\{C_2\}_n$ for W_2 whose codewords are of length n and consists of codewords from $\{C_1\}_n$ in the following way:

$$C_2 = \left\{ c_2 = \begin{bmatrix} c_1^{(u)} \\ c_1^{(l)} \end{bmatrix} : c_1^{(u)}, c_1^{(l)} \in C_1 \right\},$$

where $c_1^{(u)}$ and $c_1^{(l)}$ are row vectors. There are 2^{nR} codewords in \mathcal{C}_1, and hence we can have $2^{nR} \cdot 2^{nR} = 2^{2nR}$ codewords in \mathcal{C}_2 if we choose the two components independently. Thus the rate of \mathcal{C}_2 is $(\log 2^{2nR})/n = 2R$. The receiver observes the sequence y of length $2 \cdot n$, which consists of the n-length sequences y_1 and y_2 of the two parallel channels with law W_1, i.e.,

$$y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}.$$

The decoder for the channel W_2 divides y into y_1 and y_2 and decodes these sequences independently using the decoder for channel W_1. Since the rate R is achievable on W_1 both y_1 and y_2 can be decoded with a probability of error which tends to 0 as $n \to \infty$ and therefore the probability of decoding an error from y on W_2 also tends to 0. Thus, the rate $2R$ is achievable.
b) The main idea lies in making two consecutive uses of the same channel with law W_1 instead of transmitting over two parallel independent channels of law W_1. As we are using the channel twice as often as before, the rate is going to be divided by two.

Consider a sequence of rate-R codes $\{C_2\}_n$ of length n for W_2:

$$C_2 = \{c_2 = [c_{21}, c_{22}, \ldots, c_{2n}] : c_{2i} \in \mathcal{X} \times \mathcal{X}, \forall i \in \{1, \ldots, n\}\}$$

and corresponding decoding functions $\phi_{2,n} : (\mathcal{Y} \times \mathcal{Y})^n \to \{1, 2, \ldots, 2^{nR}\}$ such that the error probability P_e of C_2 tends to zero as $n \to \infty$. As in Part a) we can think of every codeword $c_2 \in C_2$ as a $2 \times n$ matrix with entries in \mathcal{X} and denote the row containing the first component of each symbol as $c_2^{(u)}$ and the row containing the second component as $c_2^{(l)}$.

We construct a sequence of rate-$\frac{R}{2}$ codes $\{C_1\}_{2n}$ of length $2n$ and decoding functions $\phi_{1,2n} : \mathcal{Y}^{2n} \to \{1, 2, \ldots, 2^{nR}\}$ by choosing every codeword in C_1 to correspond to a codeword c_2 in C_2, i.e.,

$$C_1 = \{c_1 = [c_2^{(u)} || c_2^{(l)}] : c_2 \in C_2\},$$

and using the same decoder as for the code C_2

$$\phi_{1,2n}(y_1||y_2) = \phi_{2,n}(y_1 \times y_2).$$

Then the maximum error probability P_e of C_1 tends to zero as $n \to \infty$, as the probability of an error is the same as for the code C_2. Thus we achieve the rate $R_1 = \frac{nR}{2n} = \frac{R}{2}$ on the channel W_1.

Problem 2
An Additive Noise Channel

The channel output is $Y = X + Z$, where $X \in \{0, 1\}$ and $Z \in \{0, a\}$. We must distinguish various cases depending on the value of a:

- $a = 0$: In this case $Y = X$, and therefore

$$C = \max_{P_X(\cdot)} I(X; Y) = \max_{P_X(\cdot)} H(X) = 1 \text{ bit},$$

which is achieved by a uniform distribution $P_X(\cdot)$. Hence the capacity is 1 bit per transmission.

- $a \notin \{0, \pm 1\}$: In this case Y has four possible values. If Y is 0 or a, we know that $X = 0$. If Y is 1 or $1 + a$, we know that $X = 1$. Hence $H(X|Y) = 0$, and therefore

$$C = \max_{P_X(\cdot)} I(X; Y) = \max_{P_X(\cdot)} H(X) = 1 \text{ bit},$$

which is achieved by a uniform distribution on the input X.

- $a = 1$: In this case Y has three possible output values: 0, 1, and 2. The channel looks as follows:
One sees that the channel is equivalent to a binary erasure channel with erasure probability $\alpha = \frac{1}{2}$. The capacity of the binary erasure channel is $C = 1 - \alpha = \frac{1}{2}$ bit per transmission, which is achieved by a uniform distribution on the input X.

- $a = -1$: This is similar to the case when $a = 1$: Y also can take on three different values: -1, 0, and 1, where now 0 is the “erasure” output. We again have a BEC and the capacity is also $C = \frac{1}{2}$ bit per transmission, achieved by a uniform distribution.

Problem 3

Z-Channel

Remember that the Z-channel looks as shown in Figure 1. First we express $I(X;Y)$, the mutual information between the input and output of the Z-channel, as a function of $p = \Pr[X = 1]$:

\[
\begin{align*}
H(Y|X = 0) &= 0; \\
H(Y|X = 1) &= H_b\left(\frac{1}{2}\right) = 1 \text{ bit}; \\
\implies H(Y) &= \Pr[Y = 0] \cdot 0 + \Pr[Y = 1] \cdot 1 = p \text{ bits}; \\
\Pr[Y = 0] &= \frac{1}{2} \cdot \Pr[X = 1] + 1 \cdot \Pr[X = 0] = \frac{1}{2}p + 1 - p = 1 - \frac{1}{2}p; \\
\Pr[Y = 1] &= \frac{1}{2} \Pr[X = 1] = \frac{1}{2}p; \\
\implies H(Y) &= H_b\left(\frac{p}{2}\right); \\
\implies I(X;Y) &= H(Y) - H(Y|X) = H_b\left(\frac{p}{2}\right) - p \text{ bits}.
\end{align*}
\]

Since $I(X;Y) = 0$ when $p = 0$ and $p = 1$, the maximum mutual information is obtained for some value of p such that $0 < p < 1$. Using elementary calculus, we determine that

\[
\frac{d}{dp} I(X;Y) = \frac{1}{2} \log_2 \frac{2 - p}{p} - 1,
\]
which is equal to zero for \(p = \frac{2}{5} \). (It is reasonable that \(\Pr[X = 1] < \frac{1}{2} \) because \(X = 1 \) is the noisy input to the channel.) So the capacity of the Z-channel in bits is \(H_b(\frac{1}{3}) - \frac{2}{5} \approx 0.722 - 0.4 = 0.322 \) bits per channel use.

Problem 4

Capacity of a Sum Channel

a) Let \(S \in \{1, \ldots, \nu\} \) be the chance variable representing the selected channel, i.e., \(S \sim q \) where \(q \) is the probability vector \((q_1, \ldots, q_\nu)\).

We have

\[
I(X; Y) = I(X, S; Y) = I(S; Y) + I(X; Y | S)
\]

(input alphabets are disjoint: \(X \) determines \(S \))

\[
= H(S) - H(S|Y) + I(X; Y | S)
\]

(chain rule)

\[
= H(S) + I(X; Y | S)
\]

(output alphabets are disjoint: \(Y \) determines \(S \))

\[
= H(q) + \sum_{i=1}^{\nu} q_i I(X; Y | S = i)
\]

\[
\leq H(q) + \sum_{i=1}^{\nu} q_i C_i.
\]

Equality in the last expression is achieved when conditional on \(S = i \), \(X \) is distributed according to \(p_i^* \), a capacity-achieving input distribution of the \(i \)th channel. The only variable in the last expression is \(q \). Thus, \(C \) is equal to the entropy of the channel selection plus the average of the channel capacities for the channel selection probabilities that achieve capacity \(C \).

Continuing with the last expression we get

\[
I(X; Y) \leq - \sum_{i=1}^{\nu} q_i \log_2 q_i + \sum_{i=1}^{\nu} q_i C_i
\]

\[
= - \sum_{i=1}^{\nu} q_i \log_2 q_i + \sum_{i=1}^{\nu} q_i \log_2 2^{C_i}
\]

\[
= - \sum_{i=1}^{\nu} q_i \log_2 \frac{q_i}{2^{C_i}}
\]

\[
= - \sum_{i=1}^{\nu} q_i \log_2 \frac{q_i/\alpha}{2^{C_i}/\alpha}
\]

(where \(\alpha \triangleq \sum_{i=1}^{\nu} 2^{C_i} \))

\[
= - \sum_{i=1}^{\nu} q_i \log_2 \frac{q_i}{t_i} + \sum_{i=1}^{\nu} q_i \log_2 \frac{t_i}{\alpha}
\]

(where \(t_i \triangleq \frac{2^{C_i}}{\alpha} \))

\[
= - D(q\|t) + \log_2 \alpha
\]

\[
\leq \log_2 \alpha
\]

(because \(D(q\|t) \geq 0 \))

\[
= \log_2 \left(\sum_{i=1}^{\nu} 2^{C_i} \right).
\]

Here the second inequality is achieved with equality if \(q = t \).

Note that this upper bound on the mutual information does not depend on the input anymore and it can be achieved for the optimal choice \(q^* = t \) and if conditional on \(S = i \), \(X \sim p_i^* \). Hence, it must be the capacity of the channel

\[
C = \max_{p} I(X; Y) = \log_2 \left(\sum_{i=1}^{\nu} 2^{C_i} \right).
\]

© Amos Lapidoth, 2014/2015
and the capacity-achieving input distribution is

\[p^\ast (x) = t_i \cdot p_i^\ast (x) = \frac{p_i^\ast (x) \cdot 2^{C_i}}{\sum_{j=1}^{\nu} 2^{C_j}} \quad \text{if } x \in \mathcal{X}_i, \quad i = 1, \ldots, \nu, \]

where \(\mathcal{X}_i \) is the input alphabet of the \(i \)-th channel and \(p_i^\ast \) is the capacity-achieving input distribution of the \(i \)-th channel.

Just for fun, we will verify that the Karush–Kuhn–Tucker conditions hold for our input distribution \(p^\ast (x) \). Firstly, let \(x \) be fixed in such a way that \(p^\ast (x) > 0 \) and \(x \in \mathcal{X}_i \) for some \(i \). We denote by \(r^\ast (y) \) the output distribution corresponding to \(p^\ast (x) \). Then for \(x \in \mathcal{X}_i \) and \(y \in \mathcal{Y}_i \) we have \(p^\ast (x) = p_i^\ast (x) \cdot t_i \) and \(r^\ast (y) = r_i^\ast (y) \cdot t_i \), where \(r_i^\ast (y) \) is the output distribution of the \(i \)-th channel when the input distribution is \(p_i^\ast (y) \). Hence,

\[
\mathcal{D}(W(\cdot|x)||r^\ast (\cdot)) = \sum_{y \in \mathcal{Y}_i} W(y|x) \log_2 \frac{W(y|x)}{r^\ast (y)} \\
= \sum_{y \in \mathcal{Y}_i} W(y|x) \log_2 \frac{W(y|x)}{r_i^\ast (y) \cdot t_i} \\
= \sum_{y \in \mathcal{Y}_i} W(y|x) \log_2 \frac{W(y|x)}{r_i^\ast (y)} + \log_2 \frac{1}{t_i} \\
= C_i + \log_2 \frac{1}{t_i} \\
= C_i + \log_2 \left(\frac{\sum_{j=1}^{\nu} 2^{C_j}}{2^{C_i}} \right) \\
= C_i + \log_2 \left(\sum_{j=1}^{\nu} 2^{C_j} \right) - \log_2 2^{C_i} \\
= \log_2 \left(\sum_{j=1}^{\nu} 2^{C_j} \right) \\
= C,
\]

where (1) follows because we have fixed \(x \in \mathcal{X}_i \), which means that \(y \in \mathcal{Y}_i \); and where (2) follows from the Karush–Kuhn–Tucker conditions for the \(i \)-th channel because \(p_i^\ast (x) > 0 \) and \(p_i^\ast (\cdot) \) is the capacity-achieving input distribution for the \(i \)-th channel.

Next, let \(x \) be such that \(p^\ast (x) = 0 \) and \(x \in \mathcal{X}_i \) for some \(i \). Then the derivation up to before (2) remains the same, but then the Karush–Kuhn–Tucker condition for the \(i \)-th channel will yield an inequality because \(p_i^\ast (x) = 0 \) (and \(p_i^\ast (\cdot) \) is the capacity-achieving input distribution for the \(i \)-th channel):

\[
\mathcal{D}(W(\cdot|x)||r^\ast (\cdot)) = \sum_{y \in \mathcal{Y}_i} W(y|x) \log_2 \frac{W(y|x)}{r_i^\ast (y)} + \log_2 \frac{1}{t_i} \\
\leq C_i + \log_2 \frac{1}{t_i} \\
= C.
\]

Thus the KKT conditions are verified.

b) The capacity of the BSC is \(1 - H_b(\epsilon) \) bits and the capacity of the other channel is zero. Thus by a) the capacity of the sum channel is

\[C = \log \left(2^{1-H_b(\epsilon)} + 2^0 \right) = \log \left(1 + 2^{1-H_b(\epsilon)} \right). \]