Problem 1 \(\text{Parallel Channels and Waterfilling} \)

Consider a pair of parallel Gaussian channels, i.e.,
\[
\begin{pmatrix}
Y_1 \\
Y_2
\end{pmatrix} =
\begin{pmatrix}
X_1 \\
X_2
\end{pmatrix} +
\begin{pmatrix}
Z_1 \\
Z_2
\end{pmatrix},
\]
where
\[
\begin{pmatrix}
Z_1 \\
Z_2
\end{pmatrix} \sim \mathcal{N}
\left(0,
\begin{pmatrix}
\sigma_1^2 & 0 \\
0 & \sigma_2^2
\end{pmatrix}
\right)
\]
and where we have a power constraint \(\mathbb{E}[X_1^2 + X_2^2] \leq P \). Assume \(\sigma_1^2 > \sigma_2^2 \). At what power does the channel stop behaving like a single channel with noise variance \(\sigma_2^2 \), and begin behaving like a pair of channels?

Problem 2 \(\text{Multipath Gaussian Channel} \)

Consider a channel with input power constraint \(P \) where the signal takes two different paths and the two noisy signals are added together at the receive antenna. More explicitly, the output is given by
\[
Y = Y_1 + Y_2,
\]
where
\[
Y_1 = X + Z_1, \\
Y_2 = X + Z_2.
\]

a) Find the capacity of this channel if \(Z_1 \) and \(Z_2 \) are jointly Gaussian with covariance matrix
\[
K_Z =
\begin{pmatrix}
\sigma_1^2 & \rho \sigma_1 \sigma_2 \\
\rho \sigma_1 \sigma_2 & \sigma_2^2
\end{pmatrix}
\]

b) What is the capacity for \(\rho = 0 \), \(\rho = 1 \), and \(\rho = -1 \)?

Problem 3 \(\text{Bandlimited Gaussian Channel} \)

Consider the bandlimited Gaussian channel with noise power spectral density \(N_0/2 \) and power \(P \). The capacity of this channel is
\[
W \log \left(1 + \frac{P}{N_0 W} \right) \text{ bits per second},
\]
where \(W \) is the bandwidth of the channel. What would you rather have, twice the bandwidth or twice the power?