Problem 1

Expectation of a Chance Variable

In Information Theory one is frequently required to compute the expectation of \(g(X) \) where \(X \) is a chance variable taking values in \(\mathcal{X} \) and \(g: \mathcal{X} \to \mathbb{R} \cup \{-\infty, \infty\} \) is a function whose domain is \(\mathcal{X} \) and which takes values on the extended real line \(\mathbb{R} \cup \{-\infty, \infty\} \). In this case, to avoid terms of the form \(0 \cdot \infty \), the expectation of \(g(X) \), rather than being defined as

\[
E[g(X)] = \sum_{x \in \mathcal{X}} P_X(x) g(x),
\]

as for ordinary real-valued functions, must be defined as

\[
E[g(X)] = \sum_{x \in \text{supp}(P_X)} P_X(x) g(x),
\]

where \(\text{supp}(P_X) \) denotes the support of \(P_X \) defined as

\[
\text{supp}(P_X) \triangleq \{ x \in \mathcal{X} : P_X(x) \neq 0 \}.
\]

The right-hand-side of (2) is taken to be \(+\infty\) if \(\Pr[g(X) = +\infty] > 0 \) and \(\Pr[g(X) = -\infty] = 0 \). It is understood to be \(-\infty\) if \(\Pr[g(X) = -\infty] > 0 \) and \(\Pr[g(X) = +\infty] = 0 \), and it is undefined if \(\Pr[g(X) = +\infty] > 0 \) and \(\Pr[g(X) = -\infty] > 0 \).

a) Let \(|\mathcal{X}| = L \) and \(|\text{supp}(P_X)| = L' \) where \(L' \leq L \). Here \(|\mathcal{A}| \) denotes the cardinality of the set \(\mathcal{A} \), i.e., the number of elements in \(\mathcal{A} \).

Find \(E\left[\frac{1}{P_X(X)}\right] \).

Hint: What is \(g(x) \)?

b) Suppose that \(X \) and \(X' \) are chance variables taking value in \(\mathcal{X} \). Write out the general expression for \(E[P_X(X)] \) and \(E[P_{X'}(X')] \).

c) Write out the general expression for \(E[-\log P_X(X)] \) and \(E[-\log P_{X'}(X')] \).

Note: We define \(a + \infty = \infty \) whenever \(a \neq -\infty \) and \(a \cdot \infty = \text{sgn}(a) \cdot \infty \) whenever \(a \neq 0 \).

Problem 2

Statistical Independence

Let \(X_1, X_2, \ldots, X_n \) be a sequence of binary, independent and identically distributed (IID) random variables. Assume \(n > 1 \), and assume

\[
\Pr[X_i = 1] = \Pr[X_i = 0] = \frac{1}{2}, \quad i = 1, \ldots, n.
\]

Let \(Z \) be a parity check on \(X_1, \ldots, X_n \), i.e., \(Z = X_1 \oplus X_2 \oplus \cdots \oplus X_n \) where \(0 \oplus 0 = 1 \oplus 1 = 0 \) and \(0 \oplus 1 = 1 \oplus 0 = 1 \).
a) Is Z statistically independent of X_1?

b) Are Z, X_1, \ldots, X_{n-1} statistically independent?

c) Are Z, X_1, \ldots, X_n statistically independent?

d) Is Z statistically independent of X_1 if $\Pr[X_i = 1] = p \neq \frac{1}{2}$ for all i? You may take $n = 2$ here.

Problem 3

On the Expectation of a Discrete Random Variable

Let the random variable T take on only positive integer values. Show that

$$
E[T] = \sum_{v=1}^{\infty} \Pr[T \geq v].
$$

Problem 4

Markov’s Inequality and Chebyshev’s Inequality

a) *(Markov Inequality)* For any nonnegative random variable X and any $\delta > 0$, show that

$$
\Pr[X \geq \delta] \leq \frac{E[X]}{\delta}.
$$

Exhibit a random variable X and some δ that achieves this inequality with equality.

Hint: In the definition of expectation split the sum/integration into two parts according to whether $x \geq \delta$ or $x < \delta$.

b) *(Chebyshev’s Inequality)* Let Y be a random variable with mean μ and variance σ^2. By letting $X = (Y - \mu)^2$, show that for any $\epsilon > 0$,

$$
\Pr[|Y - \mu| \geq \epsilon] \leq \frac{\sigma^2}{\epsilon^2}.
$$

Hint: Use a).

c) *(The Weak Law of Large Numbers)* Let Z_1, Z_2, \ldots, Z_n be a sequence of IID random variables with mean μ and variance σ^2. Let $\bar{Z}_n = \frac{1}{n} \sum_{k=1}^{n} Z_k$ be the sample mean. Show that

$$
\Pr[|\bar{Z}_n - \mu| \geq \epsilon] \leq \frac{\sigma^2}{n\epsilon^2}.
$$

Thus, $\Pr[|\bar{Z}_n - \mu| > \epsilon] \to 0$ as $n \to \infty$. This is known as the weak law of large numbers.

Hint: Use b).

© Amos Lapidoth, 2015/2016