Problem 1

An Additive Noise Channel

Find the channel capacity of the following discrete memoryless channel:

\[X \rightarrow Z \rightarrow Y \]

where \(\Pr[Z = 0] = \Pr[Z = a] = \frac{1}{2} \) for some fixed value \(a \in \mathbb{R} \). The input \(X \) takes value in the binary alphabet \(X = \{0, 1\} \). Assume that \(Z \) is independent of \(X \).

Hint: Observe that the channel capacity depends on the value of \(a \), i.e., you need to introduce a case distinction!

Problem 2

Z-Channel

The Z-channel has binary input and output alphabets and transition probabilities \(W(\cdot|\cdot) \) given by the following matrix:

\[
W = \begin{pmatrix}
1 & 0 \\
\frac{1}{2} & \frac{1}{2}
\end{pmatrix}
\quad X, Y \in \{0, 1\}.
\]

The channel is called \(Z\)-channel because it looks like the letter \(Z \), see Figure 1. Find the capacity of the \(Z\)-channel and the maximizing input probability distribution.

© Amos Lapidoth, 2015/2016
Problem 3

Capacity of a Sum Channel

a) Consider ν (in general different) discrete memoryless channels with capacities C_1, C_2, \ldots, C_ν. The sum channel associated therewith is the channel whose input and output alphabets are the unions of those of the original channels. (The input and output alphabets of the different channels are assumed disjoint.) That is, the sum channel has all ν channels available for use but only one channel may be used at any given time. Show that the capacity of the sum channel is

$$C = \log \left(\sum_{i=1}^{\nu} 2^{C_i} \right)$$

(where C_i are measured in bits) and find q_i, the probability of using the i-th channel. Interpret C as the average of the capacities of the individual channels plus the information conveyed by the selection of a channel.

b) Use the above result to find the capacity of the channel shown in Figure 2.

![Diagram of a sum channel](image)

Figure 2: A sum channel.

Problem 4

Using Two Channels At Once

Consider two independent discrete memoryless channels $(X_1, W_1(\cdot|\cdot), Y_1)$ and $(X_2, W_2(\cdot|\cdot), Y_2)$ with capacities C_1 and C_2 respectively. A new channel $(X_1 \times X_2, W_1(\cdot|\cdot) \times W_2(\cdot|\cdot), Y_1 \times Y_2)$ is formed in which a tuple $(x_1, x_2) \in X_1 \times X_2$ is sent, and the output (Y_1, Y_2) is a tuple in $Y_1 \times Y_2$. Find the capacity of this channel.