Problem 1

On the Statistical Mean Value

Let X_1, X_2, \ldots, X_n be IID random variables with $\Pr[X_k = 0] = \Pr[X_k = 1] = 1/2$, and let

$$\hat{P}_n = \frac{1}{n} \sum_{k=1}^{n} I\{X_k = 1\},$$

where $I\{\cdot\}$ is the indicator function:

$$I\{\text{statement}\} = \begin{cases}
1 & \text{if statement is true}, \\
0 & \text{if statement is false}.
\end{cases}$$

Hence, \hat{P}_n is the ratio of the number of 1s in the sequence to the length of the sequence.

a) Compute $\lim_{n \to \infty} \Pr[\hat{P}_n = \frac{1}{2}]$.

Hint: You may find Stirling’s approximation (i.e., $n! \approx e^{-n} n^n \sqrt{2\pi n}$) useful.

b) Compute $\lim_{n \to \infty} \Pr[0.4999 \leq \hat{P}_n \leq 0.5001]$.

Hint: This part requires no calculation.

Problem 2

One Bit Quantization of a Single Gaussian Random Variable

Let X be a Gaussian random variable with zero mean and variance σ^2, i.e., $X \sim \mathcal{N}(0, \sigma^2)$, and let the distortion measure be squared error, i.e.,

$$d(x, \hat{x}) = (x - \hat{x})^2.$$

We do not allow block description. Show that the optimum reproduction points for 1 bit quantization are $\pm \sqrt{\frac{2}{\pi}} \sigma$, and that the expected distortion for 1 bit quantization is $\frac{\pi - 2}{\pi} \sigma^2$.

(You can assume that the optimum reproduction points are $\pm a$ for some $a > 0$, and that it is optimal to map x to a if it is positive, and to map it to $-a$ otherwise.)