Model Answers to Exercise 12 of December 2, 2015

Problem 1
On the Statistical Mean Value

a) Let p_n denote the following function of the sequence $x \in \mathcal{X}^n$

$$p_n(x) = \frac{1}{n} \sum_{k=1}^{n} I\{x_k = 1\}.$$

Then, assuming that n is an even number, we make the following derivation:

$$\Pr\left[\hat{P}_n = \frac{1}{2}\right] = \sum_{x: p_n(x) = 1/2} \Pr[X = x]$$

$$= \left|\left\{x: p_n(x) = \frac{1}{2}\right\}\right| \cdot \left(\frac{1}{2}\right)^n$$

$$= 2^{-n} \cdot \frac{n}{n!}$$

$$= 2^{-n} \cdot \frac{n!}{(n/2)!^2}$$

$$\approx 2^{-n} \cdot \frac{(\frac{n}{2})^n \sqrt{2\pi n}}{\left(\frac{(n/2)^{n/2} \sqrt{2\pi n/2}}{2}\right)^n}$$

$$= 2^{-n} \cdot \frac{(\frac{n}{2})^n \sqrt{2\pi n}}{(\frac{n}{2})^n \pi n}$$

$$= \sqrt{\frac{2}{\pi n}}$$

$$\to 0 \quad \text{as} \ n \to \infty,$$

where $|\mathcal{A}|$ denotes the cardinality of the set \mathcal{A}. In (1) we have used Stirling’s approximation. Therefore

$$\lim_{n \to \infty} \Pr\left[\hat{P}_n = \frac{1}{2}\right] = 0.$$

b) The weak law of large numbers implies that

$$\hat{P}_n = \frac{1}{n} \sum_{k=1}^{n} I\{X_k = 1\} \quad \overset{n \to \infty}{\to} \quad \mathbb{E}[X] = \frac{1}{2} \quad \text{in probability.}$$

Therefore,

$$\lim_{n \to \infty} \Pr\left[0.4999 \leq \hat{P}_n \leq 0.5001\right] = 1.$$
Problem 2

One Bit Quantization of a Single Gaussian Random Variable

We first prove that the optimum representation points are \(\pm a \) for some \(a > 0 \), and that it is optimal to map \(x \) to \(a \) if it is positive, and to map it to \(-a \) otherwise.

Having a one bit quantization means that we have two reconstruction points: one at \(\alpha \) and one at \(\beta \). Since the distortion measure is the quadratic error to the reconstruction point, the distortion is minimized by mapping \(x \) to the closest reconstruction point, i.e., for any constellation of reconstruction points \(\alpha, \beta \) the optimal corresponding regions are always of the form \((-\infty, (\alpha + \beta)/2] \) and \(((\alpha + \beta)/2, \infty) \).

We shall now compute the expected distortion as a function of the boundary point \(c = (\alpha + \beta)/2 \) and then show that the minimal distortion is achieved for \(c = 0 \). We assume \(c \geq 0 \), which incurs no loss in generality since the problem is symmetric with respect to the origin. The optimal reconstruction points for a given \(c \) are \(\alpha = E[X|X < c] \) and \(\beta = E[X|X \geq c] \).

This follows since the expected squared error of a random variable \(X \) to a fixed point is minimized if the fixed point is the expected value of \(X \). This can be seen by noting that for every \(\xi \in \mathbb{R} \)

\[
E \left[(X - (E[X] + \xi))^2 \right] = E[X^2] - E[X]^2 + \xi^2
\]

is minimized by \(\xi = 0 \). Hence, the reconstruction points are

\[
E[X|X < c] = \int_{-\infty}^{c} x \frac{f_X(x)}{Pr[X < c]} \, dx
= \frac{1}{Pr[X < c]} \left(\int_{-\infty}^{0} x f_X(x) \, dx + \int_{0}^{c} x f_X(x) \, dx \right)
= \frac{1}{Pr[X < c]} \left(- \int_{0}^{\infty} x f_X(x) \, dx + \int_{0}^{c} x f_X(x) \, dx \right)
= \frac{1}{Pr[X < c]} \left(- \int_{\infty}^{c} x f_X(x) \, dx \right).
\]

and

\[
E[X|X \geq c] = \int_{c}^{\infty} x \frac{f_X(x)}{Pr[X \geq c]} \, dx
= \frac{1}{Pr[X \geq c]} \int_{c}^{\infty} x f_X(x) \, dx.
\]

We thus have

\[
\beta = -\alpha \cdot \frac{Pr[X < c]}{Pr[X \geq c]}.
\]

The expected distortion becomes

\[
E[d(X, \hat{X})] = \int_{-\infty}^{c} (x - \alpha)^2 f_X(x) \, dx + \int_{c}^{\infty} (x - \beta)^2 f_X(x) \, dx
= \int_{-\infty}^{\infty} x^2 f_X(x) \, dx - 2\alpha \int_{-\infty}^{c} x f_X(x) \, dx + \alpha^2 \int_{-\infty}^{c} f_X(x) \, dx
\]

\[
- 2\beta \int_{c}^{\infty} x f_X(x) \, dx + \beta^2 \int_{c}^{\infty} f_X(x) \, dx
= \sigma^2 - \alpha^2 Pr[X < c] - \beta^2 Pr[X \geq c]
\]

© Amos Lapidoth, 2015/2016
\[= \sigma^2 - \alpha^2 \Pr[X < c] - \frac{\alpha^2 \Pr[X < c]^2}{\Pr[X \geq c]} \]
\[= \sigma^2 - \frac{1}{\Pr[X < c]} \left(\int_c^\infty x f_X(x) \, dx \right)^2 - \frac{1}{\Pr[X \geq c]} \left(\int_c^\infty x f_X(x) \, dx \right)^2 \]
\[= \sigma^2 - \left(\frac{1}{\Pr[X < c]} + \frac{1}{\Pr[X \geq c]} \right) \left(\int_c^\infty x f_X(x) \, dx \right)^2 . \]

A plot of this expression shows that its minimum is achieved for \(c = 0 \). Hence, the distortion is minimized by the symmetric repartition \((-\infty, 0], (0, \infty)\) with corresponding reconstruction points at \(-\beta\) and \(+\beta\). It remains to explicitly compute the value of \(\beta \) and the expected distortion. Both contain the expression
\[\int_0^\infty x f_X(x) \, dx = \int_0^\infty x \frac{1}{\sqrt{2\pi \sigma^2}} e^{-\frac{x^2}{2\sigma^2}} \, dx = \frac{1}{\sqrt{2\pi \sigma^2}} \int_0^\infty x \, e^{-\frac{x^2}{2\sigma^2}} \, dx = \frac{1}{2\sqrt{2\pi \sigma^2}} \int_0^\infty e^{-\frac{x^2}{2\sigma^2}} \, du = \sqrt{\frac{1}{2\pi \sigma}}, \]
where the third equality follows from the substitution \(u = x^2 \). We obtain
\[\beta = \frac{1}{\Pr[X \geq 0]} \int_0^\infty x f_X(x) \, dx = 2 \sqrt{\frac{1}{2\pi \sigma}} = \sqrt{\frac{2}{\pi \sigma}} = -\alpha, \]
and
\[E[d(X, \hat{X})] = \sigma^2 - \left(\frac{1}{\Pr[X < 0]} + \frac{1}{\Pr[X \geq 0]} \right) \left(\int_0^\infty x f_X(x) \, dx \right)^2 \]
\[= \sigma^2 - \frac{4}{2\pi} \frac{1}{\sigma^2} = \frac{\pi}{2\pi} = \frac{\pi - 2}{\pi} \sigma^2 . \]