Problem 1

Example of Joint Entropy

a)

\[
H(X) = - \sum_x P_X(x) \log P_X(x) = - \frac{2}{3} \log \frac{2}{3} - \frac{1}{3} \log \frac{1}{3} = \log 3 - \frac{2}{3} = 0.918 \text{ bits},
\]

\[
H(Y) = - \sum_y P_Y(y) \log P_Y(y) = - \frac{1}{3} \log \frac{1}{3} - \frac{2}{3} \log \frac{2}{3} = \log 3 - \frac{2}{3} = 0.918 \text{ bits}.
\]

b)

We need the conditional probabilities \(P_{X|Y}\) and \(P_{Y|X}\). With \(P_{X|Y}(x|y) = \frac{P_{X,Y}(x,y)}{P_Y(y)}\) we get

\[
\begin{array}{c|cc}
 P_{X|Y}(x|y) & x = 0 & x = 1 \\
 \hline
 y = 0 & 1 & 0 \\
 y = 1 & \frac{1}{2} & \frac{1}{2}
\end{array}
\]

\[
\begin{array}{c|cc}
 P_{Y|X}(y|x) & y = 0 & y = 1 \\
 \hline
 x = 0 & 1/2 & 1/2 \\
 x = 1 & 0 & 1
\end{array}
\]

Thus, we can calculate

\[
H(X|Y) = - \sum_y P_Y(y) \sum_{x \in \text{supp}(P_{X|Y}(|y))} P_{X|Y}(x|y) \log P_{X|Y}(x|y)
= - \frac{1}{3} (1 \log 1) - \frac{2}{3} \left(\frac{1}{2} \log \frac{1}{2} + \frac{1}{2} \log \frac{1}{2} \right) = \frac{2}{3} \text{ bits},
\]

\[
H(Y|X) = - \sum_x P_X(x) \sum_{y \in \text{supp}(P_{Y|X}(|x))} P_{Y|X}(y|x) \log P_{Y|X}(y|x)
= - \frac{2}{3} \left(\frac{1}{2} \log \frac{1}{2} + \frac{1}{2} \log \frac{1}{2} \right) - \frac{1}{3} (1 \log 1) = \frac{2}{3} \text{ bits}.
\]

c)

\[
H(X,Y) = 3 \cdot \left(-\frac{1}{3} \log \frac{1}{3} \right) = \log 3 = 1.585 \text{ bits}.
\]

d)

\[
H(Y) - H(Y|X) = \log 3 - \frac{4}{3} = 0.252 \text{ bits}.
\]

e)

\[
I(X;Y) = H(Y) - H(Y|X) = \log 3 - \frac{4}{3} = 0.252 \text{ bits}.
\]
Problem 2

Zero Conditional Entropy

First, remember that $H(Y|X = x) \geq 0$ with equality if, and only if, for a given $X = x$, Y is deterministic.

Next, note that $H(Y|X)$ can be written as

$$H(Y|X) = \sum_{x \in \text{supp}(P_X)} P_X(x) H(Y|X = x)$$

and thus is given by a sum of nonnegative terms. As $P_X(x) > 0$ for all $x \in \text{supp}(P_X)$, we can conclude that $H(Y|X) = 0$ if, and only if, $H(Y|X = x) = 0$ for all x with $P_X(x) > 0$. But this is equivalent to saying that Y is determined by X for all x with $P_X(x) > 0$, i.e., Y is a function of X with probability one.

Problem 3

Entropy of Functions of a Chance Variable

a) This follows directly from the chain rule.

b) This is a consequence of Problem 2.

c) This also holds because of the chain rule.

d) This inequality follows because the conditional entropy is nonnegative.

Thus, applying a function to a chance variable never increases the entropy. We have equality if and only if $H(X|g(X)) = 0$, which is satisfied if and only if X is a function of $g(X)$ with probability one, i.e., if and only if the restriction of $g(\cdot)$ to the support of P_X is injective. (The restriction of $g(\cdot)$ to the support of P_X is the function $g|_{\text{supp}(P_X)}: \text{supp}(P_X) \rightarrow \mathcal{Y}: x \mapsto g(x)$.)

Problem 4

Entropy of a Sum

a) Observe that

$$H(X,Y,Z) \overset{(i)}{=} H(X) + H(Y|X) + H(Z|X,Y) = H(X) + H(Y|X),$$

$$H(X,Y,Z) \overset{(i)}{=} H(X) + H(Z|X) + H(Y|X,Z) = H(X) + H(Z|X),$$

where (i) follows from the chain rule and the underbraced terms are zero because Z is a function of the pair (X,Y) and Y is a function of the pair (X,Z). Therefore, we conclude that $H(Z|X) = H(Y|X)$.

If X and Y are independent, we have $H(Y) = H(Y|X)$, so

$$H(Y) = H(Y|X) = H(Z|X) \leq H(Z),$$

where the last inequality follows because conditioning does not increase entropy. Likewise, one can show that $H(X) \leq H(Z)$ if X and Y are independent.

b) Let X and Y be fair coin flips that are influenced by each other in such way that whenever X equals one, Y equals zero and the other way round, i.e., $P_{Y|X}(0|0) = 0$, $P_{Y|X}(1|0) = 1$, $P_{Y|X}(0|1) = 1$, and $P_{Y|X}(1|1) = 0$. In this case, $Z = 1$ with probability 1. Thus, $H(Z) = 0$, however, $H(X) = H(Y) = 1$ bit. Note that Y is a function of X.

© Amos Lapidoth, 2016 2
c) Note that Z is a function of the pair (X,Y), so $H(Z) \leq H(X,Y)$ and

$$H(Z) \leq H(X,Y)$$

$$\overset{(i)}{=} H(X) + H(Y) - I(X;Y)$$

$$\overset{(ii)}{\leq} H(X) + H(Y),$$

where (i) follows from the definition of the mutual information and (ii) follows because mutual information is nonnegative. The first inequality holds with equality if and only if the pair (X,Y) can be recovered from Z with probability one. The second inequality holds with equality if and only if $I(X;Y) = 0$, i.e., if and only if X and Y are independent. Therefore, $H(Z) = H(X) + H(Y)$ if and only if X and Y are independent and the pair (X,Y) can be recovered from Z with probability one.

Note that in our case where $Z = X + Y$, the pair (X,Y) can be recovered from Z if the alphabets \mathcal{X} and \mathcal{Y} are such that for each possible pair $(x_i, y_j) \in \mathcal{X} \times \mathcal{Y}$, the sum $x_i + y_j$ is unique. An example of such a situation is $\mathcal{X} = \{1, \ldots, 10\}$ and $\mathcal{Y} = \{0, 100\}$.

Problem 5

Jensen’s Inequality

Remember what Jensen’s inequality states:

Lemma 1. If f is a concave function and X is a random variable, then

$$E[f(X)] \leq f(E[X]). \quad (1)$$

Moreover, if f is strictly concave, then equality in (1) implies $X = \text{const}$.

Let A be a uniformly distributed random variable over the set $\mathcal{A} = \{a_1, a_2, \ldots, a_n\}$. Then,

$$E[A] = \sum_{k=1}^{n} \frac{1}{n} \cdot a_k = \frac{1}{n} \sum_{k=1}^{n} a_k.$$

a) Let $f : \mathbb{R}^+ \rightarrow \mathbb{R}$, $x \mapsto f(x) = \log x$. The function f is strictly concave, so

$$\log \left(\prod_{k=1}^{n} a_k \right)^{\frac{1}{n}} = \frac{1}{n} \log \left(\prod_{k=1}^{n} a_k \right)$$

$$= \frac{1}{n} \sum_{k=1}^{n} \log a_k$$

$$= E[\log A]$$

$$\leq \log E[A]$$

$$= \log \left(\frac{1}{n} \sum_{k=1}^{n} a_k \right).$$

Because the function f is monotonically increasing, we have

$$\left(\prod_{k=1}^{n} a_k \right)^{\frac{1}{n}} \leq \frac{1}{n} \sum_{k=1}^{n} a_k.$$

Since f is strictly concave, equality holds if and only if A is a deterministic random variable, i.e., $a_k = a = \text{constant}$, $\forall k$.

© Amos Lapidoth, 2016 3
b) If $\beta \geq 1$, then $f: \mathbb{R}^+ \to \mathbb{R}$, $x \mapsto f(x) = x^\beta$ is a convex function. Appropriately modified, the lemma above can be used for convex functions. Using the random variable A again, we get

$$\sum_{k=1}^{n} \frac{1}{n} a_k^\beta = \mathbb{E}[A^\beta] \geq (\mathbb{E}[A])^\beta = \left(\sum_{k=1}^{n} \frac{1}{n} a_k\right)^\beta,$$

which proves the claim.

For $0 < \beta \leq 1$, the function f is concave. Therefore, $\frac{1}{n} \sum_{k=1}^{n} a_k \leq \left(\frac{1}{n} \sum_{k=1}^{n} a_k\right)^{\beta}$.

c) Considering Part b) for $\beta = 2$, we see that $\sqrt{\frac{1}{n} \sum_{k=1}^{n} a_k^2}$ is always at least as large as $\frac{1}{n} \sum_{k=1}^{n} a_k$. For example, if your scores in six exams are 1, 2, 3, 4, 5 and 6, respectively, then $\frac{1}{n} \sum_{k=1}^{n} a_k = 3.5$, while $\sqrt{\frac{1}{n} \sum_{k=1}^{n} a_k^2} = 3.89$.

© Amos Lapidoth, 2016