Nonnegativity of Relative Entropy

http://www.isi.ee.ethz.ch/teaching/courses/it1.html

Theorem 1. Let \(p(\cdot) \) and \(q(\cdot) \) be probability mass functions on a finite set \(\mathcal{X} \). The relative entropy \(D(p\|q) \) satisfies

\[
D(p\|q) \geq 0
\]

with equality if and only if

\[
p(x) = q(x) \quad \forall x \in \mathcal{X}.
\]

Proof. Since the claim is true for \(D(p\|q) = \infty \), we assume from now on that \(p(x) > 0 \) implies \(q(x) > 0 \) for all \(x \in \mathcal{X} \), which is equivalent to \(D(p\|q) < \infty \). The claims do not depend on whether \(D(p\|q) \) is measured in bits or nats, so we use the natural logarithm. Using that

\[
\ln \alpha \leq \alpha - 1 \quad \forall \alpha > 0
\]

with equality if and only if \(\alpha = 1 \), we prove (1) by showing that \(-D(p\|q) \leq 0 \):

\[
-D(p\|q) = \sum_{x \in \mathcal{X} : p(x) > 0} p(x) \ln \frac{q(x)}{p(x)}
\]

(a)

\[
\leq \sum_{x \in \mathcal{X} : p(x) > 0} p(x) \left(\frac{q(x)}{p(x)} - 1 \right)
\]

\[
= \sum_{x \in \mathcal{X} : p(x) > 0} q(x) - 1
\]

(b)

\[
\leq 1 - 1
\]

\[
= 0.
\]

Equality holds if and only if both (a) and (b) hold with equality. The equality condition for (3) implies that (a) holds with equality if and only if

\[
p(x) = q(x) \quad \forall x \in \mathcal{X} : p(x) > 0.
\]

Since \(q(\cdot) \) is a probability mass function,

\[
1 = \sum_{x \in \mathcal{X}} q(x) = \sum_{x \in \mathcal{X} : p(x) > 0} q(x) + \sum_{x \in \mathcal{X} : p(x) = 0} q(x),
\]

so (b) holds with equality if and only if

\[
q(x) = 0 \quad \forall x \in \mathcal{X} : p(x) = 0,
\]

which is equivalent to

\[
p(x) = q(x) \quad \forall x \in \mathcal{X} : p(x) = 0.
\]

Combining (4) and (5), we see that (1) holds with equality if and only if (2) is satisfied.

\(\square \)