Model Answers to Exercise 3 of October 4, 2017

http://www.isi.ee.ethz.ch/teaching/courses/it1.html

Problem 1 Csizsár’s Identity

By the chain rule for mutual information, we have
\[
I(A^n_{i+1}; B^i) = I(A^n_{i+1}; B^{i-1}) + I(A^n_{i+1}; B^i | B^{i-1}), \\
I(B^{i-1}; A^n_i) = I(B^{i-1}; A^n_{i+1}) + I(B^{i-1}; A_i | A^n_{i+1}).
\]

Applying these identities, we obtain
\[
\sum_{i=1}^n \left(I(A^n_{i+1}; B^i | B^{i-1}) - I(B^{i-1}; A_i | A^n_{i+1}) \right)
= \sum_{i=1}^n \left[\left(I(A^n_{i+1}; B^i) - I(A^n_{i+1}; B^{i-1}) \right) - \left(I(B^{i-1}; A^n_i) - I(B^{i-1}; A^n_{i+1}) \right) \right]
= \sum_{i=1}^n \left(I(A^n_{i+1}; B^i) - I(B^{i-1}; A^n_i) \right)
= I(A^n_{n+1}; B^n) - I(B^0; A^n)
= 0 - 0
= 0,
\]
where (i) holds because we have a *telescoping sum*, i.e., because \(\sum_{i=1}^n (c_i - c_{i-1}) = c_n - c_0. \)

Problem 2 Entropy is Submodular

For \(S, T \subseteq \Omega \), define the chance variable \(X \) as the tuple of all chance variables from the set \(S \setminus T \); \(Y \) as the tuple of all chance variables from the set \(S \cap T \); and \(Z \) as the tuple of all chance variables from the set \(T \setminus S \). Then,
\[
H(S \cup T) + H(S \cap T) \overset{(i)}{=} H(X, Y, Z) + H(Y) \\
\overset{(ii)}{=} H(X, Y) + H(Z | X, Y) + H(Y) \\
\overset{(iii)}{\leq} H(X, Y) + H(Z | Y) + H(Y) \\
\overset{(iv)}{=} H(X, Y) + H(Y, Z) \\
\overset{(v)}{=} H(S) + H(T),
\]
where (i) and (v) hold because we partitioned the set \(S \cup T \) into the sets \(S \setminus T, S \cap T \), and \(T \setminus S \) and because grouping chance variables together does not change the entropy; (ii) and (iv) follow from the chain rule; and (iii) holds because conditioning does not increase entropy.

© Amos Lapidoth, 2017
Problem 3

Pure Randomness and Bent Coins

a) i) We have

\[H(X_1, X_2, \ldots, X_n) = \sum_{i=1}^{n} H(X_i | X_1, \ldots, X_{i-1}) \]

\[= \sum_{i=1}^{n} H(X_i) \]

\[= nH_b(p), \]

where (A) follows from the chain rule; (B) holds because \(X_1, \ldots, X_n \) are independent; and (C) holds because \(X_1, \ldots, X_n \) are Bernoulli(\(p \)).

ii) This holds because \((Z_1, Z_2, \ldots, Z_K, K) \) is a function of \((X_1, X_2, \ldots, X_n) \) and because applying a function to a chance variable does not increase the entropy. (We have \((Z_1, Z_2, \ldots, Z_K) = f(X_1, X_2, \ldots, X_n) \). From the sequence \((Z_1, Z_2, \ldots, Z_K) \) we can compute \(K \), the length of the sequence. Consequently, \((Z_1, Z_2, \ldots, Z_K, K) \) is also a function of \((X_1, X_2, \ldots, X_n) \).

iii) This follows from the chain rule.

iv) For a given \(K, Z_1, \ldots, Z_K \) are IID \(\sim \) Bernoulli(1/2). Therefore,

\[H(Z_1, Z_2, \ldots, Z_K | K) = \sum_k P_K(k) \cdot H(Z_1, Z_2, \ldots, Z_K | K = k) \]

\[= \sum_k P_K(k) \sum_{i=1}^{k} H(Z_i | K = k) \]

\[= \sum_k P_K(k) \sum_{i=1}^{k} 1 \text{ bit} \]

\[= \sum_k P_K(k) k \]

\[= \mathbb{E}[K] \text{ bits}. \]

v) This follows from the nonnegativity of entropy.

b) Since we do not know \(p \), the only way to generate pure random bits is to use the fact that all sequences with the same number of ones are equally likely. For example, the sequences 0001, 0010, 0100 and 1000 are equally likely and can be used to generate two pure random bits. The sequences 0111, 0101, 1001, 0110, 1010, and 1100 are also equally likely, however one cannot produce \(\log_2 6 \) pure random bits as six is not a power of 2. Here, we can choose four out of the six sequences and produce two pure random bits, and then take the remaining two sequences for producing one random bit. An example of a mapping to generate random bits is

\[
\begin{align*}
0000 & \rightarrow \Lambda \\
0001 & \rightarrow 00 \\
0010 & \rightarrow 01 \\
0100 & \rightarrow 10 \\
1000 & \rightarrow 11 \\
0011 & \rightarrow 00 \\
0110 & \rightarrow 01 \\
1100 & \rightarrow 10 \\
1010 & \rightarrow 01 \\
1110 & \rightarrow 11 \\
1011 & \rightarrow 01 \\
1111 & \rightarrow 00 \\
1101 & \rightarrow 10 \\
0101 & \rightarrow 1 \\
1011 & \rightarrow 11 \\
0111 & \rightarrow 00 \\
1111 & \rightarrow \Lambda
\end{align*}
\]
The resulting expected number of produced random bits is

\[
E[K] = (1 - p)^4 \cdot 0 + 4p(1 - p)^3 \cdot 2 + 4p^2(1 - p)^2 \cdot 2 + 2p^3(1 - p)^2 \cdot 1 \\
+ 4p^3(1 - p) \cdot 2 + p^4 \cdot 0 \\
= 8p(1 - p)^3 + 10p^2(1 - p)^2 + 8p^3(1 - p).
\]

For example, for \(p \approx \frac{1}{2} \), the expected number of pure random bits is close to 1.625. This is substantially less than the 4 pure random bits that could be generated if \(p \) were exactly \(\frac{1}{2} \).

Problem 4

Conditional vs. Unconditional Mutual Information

a) We want to find a situation where the information “about \(X \)”, which you “get from \(Y \)”, is greater than the information gained from \(Y \) about \(X \) when we already know \(Z \). A simple example of such a situation is if \(X \) is the result of a fair coin flip, and \(Y = X \) and \(Z = X \). In this case, \(I(X; Y|Z) < I(X; Y) \):

\[
I(X; Y|Z) = H(X|Z) - H(X|Y, Z) = 0 \text{ bits}, \\
I(X; Y) = H(X) - H(X|Y) = 1 \text{ bit}.
\]

b) In this example \(Z \) is supposed to increase the information you get from \(Y \) about \(X \). Let \(X \) and \(Z \) be independent Bernoulli(1/2) random variables, and let \(Y = X \oplus Z \). We have

\[
I(X; Y|Z) = H(X|Z) - H(X|Y, Z) \overset{(i)}{=} H(X) = 1 \text{ bit},
\]

where (i) holds because \(X \) and \(Z \) are independent. From Exercise 1, Problem 3 we know that \(X \) and \(Y \) are independent, so \(I(X; Y) = 0 \) bits, and therefore \(I(X; Y|Z) > I(X; Y) \).

Problem 5

Classes of Codes

a) No, the code is not instantaneous, since the first codeword, 0, is a prefix of the second codeword, 01.

b) Yes, the code is uniquely decodable. Given a sequence of codewords, first isolate occurrences of 01 (i.e., find all the 1’s) and then parse the rest into 0’s.

c) Yes, all uniquely decodable codes are nonsingular.