Problem 1
An Additive Noise Channel

Find the channel capacity of the following discrete memoryless channel:

\[
\begin{array}{c}
X \quad + \\
\downarrow \quad Z \quad \uparrow \\
X \quad \rightarrow \quad Y
\end{array}
\]

where \(\Pr[Z = 0] = \Pr[Z = a] = \frac{1}{2} \) for some fixed value \(a \in \mathbb{R} \). The input \(X \) takes values in the binary alphabet \(\mathcal{X} = \{0, 1\} \). Assume that \(Z \) is independent of \(X \).

Hint: Observe that the channel capacity depends on the value of \(a \), i.e., you need to introduce a case distinction!

Problem 2
Data Processing

Let \(X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow \cdots \rightarrow X_n \) form a Markov chain, i.e.,

\[
P_{X_1,\ldots,X_n}(x_1, x_2, \ldots, x_n) = P_{X_1}(x_1)P_{X_2|X_1}(x_2|x_1)\cdots P_{X_n|X_{n-1}}(x_n|x_{n-1}).
\]

Reduce \(I(X_1; X_2, \ldots, X_n) \) to its simplest form.

Problem 3
Preprocessing the Output

A communication channel with transition probabilities \(W(\cdot\mid\cdot) \) and channel capacity

\[
\mathcal{C} = \max_{P_X} I(X; Y)
\]

is given. A helpful statistician preprocesses the output by forming \(\tilde{Y} = g(Y) \). He claims that this will strictly improve the capacity.

a) Show that he is wrong.

b) Under what conditions does he not strictly decrease the capacity?
Problem 4

A Channel With Two Independent Looks at Y

Let Y_1 and Y_2 be conditionally independent given X.

a) Show that $I(X;Y_1,Y_2) = I(X;Y_1) + I(X;Y_2) - I(Y_1;Y_2)$.

b) Conclude that the capacity of the channel

\[
\begin{array}{c}
 X \\
 \downarrow \\
 W_1 \rightarrow Y_1 \\
 \downarrow \\
 W_2 \rightarrow Y_2
\end{array}
\]

is upper bounded by the sum of the capacity of the channel

\[
\begin{array}{c}
 X \\
 \rightarrow W_1 \rightarrow Y_1
\end{array}
\]

and the capacity of the channel

\[
\begin{array}{c}
 X \\
 \rightarrow W_2 \rightarrow Y_2
\end{array}
\]

Problem 5

Miscellaneous Capacities

Find the capacity and an optimizing input probability assignment for each of the discrete memoryless channels in Figure 1.
Figure 1: Miscellaneous channels.