eth_logo d_itet_logo isi_logo

IT I: Program

Date Topic Lecturer Location
20.09.2017 block diagram of a digital communication system; chance variables; entropy; binary entropy function; relative entropy Amos Lapidoth ETF E 1
27.09.2017 concave and convex functions; Jensen's inequality; relative entropy is nonnegative; joint entropy; conditional entropy; chain rule for entropy; mutual information; conditional mutual information Amos Lapidoth ETF E 1
04.10.2017 chain rule for mutual information; Fano's inequality; nonsingular, uniquely decodable and prefix-free codes; Kraft's inequality Amos Lapidoth ETF E 1
11.10.2017 Kraft's inequality; source coding theorem: converse, Shannon code; mismatched source code; Huffman code Amos Lapidoth ETF E 1
18.10.2017 Huffman code; strong and weak typicality; asymptotic equipartition property (AEP); size of the weakly typical set; general source coding theorem Amos Lapidoth ETF E 1
25.10.2017 arithmetic coding; entropy is concave; log-sum inequality; relative entropy is convex; data-processing inequality for relative entropy Amos Lapidoth ETF E 1
01.11.2017 concavity and convexity properties of I(Q,W); discrete memoryless channel (DMC); achievable rate; capacity of a DMC; binary symmetric channel (BSC); weakly symmetric channels Amos Lapidoth ETF E 1
08.11.2017 binary erasure channel (BEC); KKT conditions for channel capacity; conditional independence and Markov chains; data-processing inequality for mutual information; joint typicality Amos Lapidoth ETF E 1
15.11.2017 direct part of the channel coding theorem: random coding, weak typicality decoding, performance analysis Amos Lapidoth ETF E 1
22.11.2017 converse of the channel coding theorem; feedback cannot increase the capacity of a DMC; source-channel separation theorem Amos Lapidoth ETF E 1
29.11.2017 lossy compression: quantization, expected distortion, achievable rate, rate-distortion function; Bernoulli source and Hamming distortion Amos Lapidoth ETF E 1
06.12.2017 strong typicality; direct part of rate-distortion theorem Amos Lapidoth ETF E 1
13.12.2017 review of direct part of rate-distortion theorem; monotonicity and convexity of rate-distortion function; converse of rate distortion theorem; source-channel separation theorem with distortion; Slepian-Wolf coding Amos Lapidoth ETF E 1
20.12.2017 Slepian-Wolf coding: direct part, converse Amos Lapidoth ETF E 1


© Signal and Information Processing Laboratory (ISI), ETH Zurich Contact Imprint