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The binary erasure MAC is given by Y = X1 + X2, where X1, X2 ∈ {0, 1} and the addition is the
standard addition in Z. In this handout, we prove that

max
PX1

·PX2

I(X1, X2;Y ) = 1.5 bits, (1)

which implies that rate pairs (R1,R2) with R1 + R2 > 1.5 bits cannot be achieved on the binary
erasure MAC.
We introduce p = Pr[X1 = 0] and q = Pr[X2 = 0] and note that

PY (y) =


pq if y = 0,

p(1− q) + (1− p)q if y = 1,

(1− p)(1− q) if y = 2.

(2)

We have

I(X1, X2;Y ) = H(Y )−H(Y |X1, X2)

= H(Y )

= −
(
pq
)

log2
(
pq
)
−
(
p(1− q) + (1− p)q

)
log2

(
p(1− q) + (1− p)q

)
−
(
(1− p)(1− q)

)
log2

(
(1− p)(1− q)

)
, (3)

where H(Y |X1, X2) is zero because Y is a (deterministic) function of X1 and X2. For p = q = 1
2 ,

I(X1, X2;Y ) = 1.5 bits, so we only need to show that the maximum in (1) does not exceed 1.5 bits.
In other words, it is enough to show that

H(Y ) ≤ 1.5 bits (4)

holds for any p ∈ [0, 1] and for any q ∈ [0, 1].
We first show that (4) is satisfied in some special cases. If p = 0, then H(Y ) = Hb(q), so clearly
H(Y ) ≤ 1 bit. Similarly, if p = 1, then H(Y ) = Hb(q), so H(Y ) ≤ 1 bit, too. By symmetry, the
same derivations also hold for q = 0 and q = 1.
Now let (p∗, q∗) ∈ [0, 1]2 be a pair that maximizes H(Y ). From the preceding discussion we may

assume that p∗ /∈ {0, 1} and q∗ /∈ {0, 1}, so the partial derivatives ∂H(Y )
∂p and ∂H(Y )

∂q , evaluated
at p = p∗ and q = q∗, are well-defined and must be zero. Any linear combination of the partial
derivatives also has to be zero, so

0
!

= (1− 2p∗) · ∂H(Y )

∂p

∣∣∣∣
p=p∗, q=q∗

− (1− 2q∗) · ∂H(Y )

∂q

∣∣∣∣
p=p∗, q=q∗

= (p∗ − q∗) log2
p∗q∗

(1− p∗)(1− q∗)
,
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which is satisfied if and only if q∗ = p∗ or q∗ = 1− p∗.
If q = 1− p, then (3) becomes

H(Y ) = p(1− p) log2
4 · 14

p(1− p)
+ (2p2 − 2p + 1) log2

2 · 12
2p2 − 2p + 1

+ p(1− p) log2
4 · 14

p(1− p)

=
3

2
− 2

(
p− 1

2

)2

−D
((

p(1− p), 2p2 − 2p + 1, p(1− p)
) ∥∥ (1

4 ,
1
2 ,

1
4

))
≤ 3

2
, (5)

so (4) is satisfied.
If q = p, then (2) becomes

PY (y) =


p2 if y = 0,

2p(1− p) if y = 1,

(1− p)2 if y = 2,

which implies that H(Y ) is symmetric in p, i.e., H(Y )|p = H(Y )|1−p holds. It is then sufficient to
consider only p ≥ 1

2 . Computing the derivative of H(Y ) with respect to p leads to

dH(Y )

dp
=

2

ln 2
· ln 1− p

p
+ 4p− 2

≤ 2

ln 2

(
1− p

p
− 1

)
+ 4p− 2

=
−2(2p− 1)(1− p ln 2)

p ln 2
, (6)

where the inequality holds because ln z ≤ (z− 1) is true for all z > 0. Since 1− p ln 2 > 0 holds for
all p ∈ [0, 1], the RHS of (6) is smaller than zero for p > 1

2 , and consequently H(Y ) does not attain
a maximum for p > 1

2 . By the symmetry of H(Y ) in p, the same holds for p < 1
2 . The remaining

possibility, p = 1
2 , leads to H(Y ) = 1.5 bits. Therefore, (4) is also satisfied in the case q = p.

We conclude the proof with the remark that p = q = 1
2 is in fact the unique maximizer of H(Y ).

Indeed: In the special cases p ∈ {0, 1} or q ∈ {0, 1}, H(Y ) ≤ 1 bit holds; in the case q = 1− p, (5)
only holds with equality if p = 1

2 ; and in the case q = p, a value p 6= 1
2 cannot attain the maximum.
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