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The binary erasure MAC is given by Y = X; + X5, where X1, X2 € {0,1} and the addition is the
standard addition in Z. In this handout, we prove that
max [(X1,X2;Y) = 1.5 bits, (1)

Px,-Px,

which implies that rate pairs (Ry,Ry) with Ry + Ry > 1.5 bits cannot be achieved on the binary
erasure MAC.
We introduce p = Pr[X; = 0] and ¢ = Pr[Xy = 0] and note that

Pq if y =0,
Py(y)=qp(l—q)+(1—p)g ify=1, (2)
(1-p)(1-q) if y =2.

We have

I(X1,X;Y) = H(Y) — H(Y[X1, X3)

— H(Y)
= —(pq) loga (pq) — (p(1 — q) + (1 — p)q) logy (p(1 — q) + (1 — p)q)
— ((1=p)(1 = q))logy((1 — p)(1 —q)), (3)

where H(Y|X1, X) is zero because Y is a (deterministic) function of X7 and X,. For p = ¢ = 1,
I(X1, X2;Y) = 1.5 bits, so we only need to show that the maximum in (1) does not exceed 1.5 bits.
In other words, it is enough to show that

H(Y) < 1.5 bits (4)

holds for any p € [0,1] and for any ¢ € [0, 1].

We first show that (4) is satisfied in some special cases. If p = 0, then H(Y) = Hy(q), so clearly
H(Y) <1 bit. Similarly, if p = 1, then H(Y') = Hy(q), so H(Y) < 1 bit, too. By symmetry, the
same derivations also hold for ¢ =0 and ¢ = 1.

Now let (p*,¢*) € [0,1]2 be a pair that maximizes H(Y). From the preceding discussion we may
assume that p* ¢ {0,1} and ¢* ¢ {0,1}, so the partial derivatives a}g;y) nd a}g(qy)’ evaluated
at p = p* and ¢ = ¢*, are well-defined and must be zero. Any linear combination of the partial

derivatives also has to be zero, so

OH(Y)
dp

OH(Y)

0=(1—2p")- 5

—(1—2¢%)-
p=p*, 4=q*
prq*
(1—=p)(1—q*)

p=p*,q=q*

*

= (p* —
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which is satisfied if and only if ¢* = p* or ¢* =1 — p*.
If ¢ =1 —p, then (3) becomes

.t 1
+ p(1 —p)log -4
=7 >p(1—p)

W=

4 .

p(i—p) + (2p* — 2p + 1) log, 2 i1 2;+ :
2

—2( - ;) —D((p(l—p),2p2—2p+ Lp(1—p)) || (i,%,i))

: (5)

so (4) is satisfied.
If ¢ = p, then (2) becomes

H(Y) = p(1 - p)log,

<

W N W

p? ify=0,
Py(y)=q2p(l—p) ify=1,
(1-p? ify=2,

which implies that H(Y) is symmetric in p, i.e., H(Y)|, = H(Y)|1—p holds. It is then sufficient to
consider only p > % Computing the derivative of H(Y') with respect to p leads to

“ In2
22— 1)(1-pn?)
N pln2

2 (1-
<<p—1>+4p—2
p

; (6)

where the inequality holds because Inz < (z — 1) is true for all z > 0. Since 1 —pIln2 > 0 holds for
all p € [0,1], the RHS of (6) is smaller than zero for p > 3, and consequently H(Y) does not attain
a maximum for p > % By the symmetry of H(Y) in p, the same holds for p < % The remaining
possibility, p = %, leads to H(Y') = 1.5 bits. Therefore, (4) is also satisfied in the case g = p.

We conclude the proof with the remark that p = ¢ = % is in fact the unique maximizer of H(Y).
Indeed: In the special cases p € {0,1} or g € {0,1}, H(Y) <1 bit holds; in the case ¢ =1 — p, (5)
only holds with equality if p = %; and in the case ¢ = p, a value p # % cannot attain the maximum.
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