Information Theory II

Spring Semester 2017 Prof. Dr. A. Lapidoth / Prof. Dr. S. Moser

Sum Rate Bound for the Binary Erasure MAC

http://www.isi.ee.ethz.ch/teaching/courses/it2.html

Handout of March 30, 2017

The binary erasure MAC is given by $Y = X_1 + X_2$, where $X_1, X_2 \in \{0, 1\}$ and the addition is the standard addition in \mathbb{Z} . In this handout, we prove that

$$\max_{P_{X_1} \cdot P_{X_2}} I(X_1, X_2; Y) = 1.5 \text{ bits}, \tag{1}$$

which implies that rate pairs (R_1, R_2) with $R_1 + R_2 > 1.5$ bits cannot be achieved on the binary erasure MAC.

We introduce $p = \Pr[X_1 = 0]$ and $q = \Pr[X_2 = 0]$ and note that

$$P_Y(y) = \begin{cases} pq & \text{if } y = 0, \\ p(1-q) + (1-p)q & \text{if } y = 1, \\ (1-p)(1-q) & \text{if } y = 2. \end{cases}$$
(2)

We have

$$I(X_1, X_2; Y) = H(Y) - H(Y|X_1, X_2)$$

= $H(Y)$
= $-(pq) \log_2(pq) - (p(1-q) + (1-p)q) \log_2(p(1-q) + (1-p)q)$
 $- ((1-p)(1-q)) \log_2((1-p)(1-q)),$ (3)

where $H(Y|X_1, X_2)$ is zero because Y is a (deterministic) function of X_1 and X_2 . For $p = q = \frac{1}{2}$, $I(X_1, X_2; Y) = 1.5$ bits, so we only need to show that the maximum in (1) does not exceed 1.5 bits. In other words, it is enough to show that

$$H(Y) \le 1.5 \text{ bits}$$
 (4)

holds for any $p \in [0, 1]$ and for any $q \in [0, 1]$.

We first show that (4) is satisfied in some special cases. If p = 0, then $H(Y) = H_{\rm b}(q)$, so clearly $H(Y) \leq 1$ bit. Similarly, if p = 1, then $H(Y) = H_{\rm b}(q)$, so $H(Y) \leq 1$ bit, too. By symmetry, the same derivations also hold for q = 0 and q = 1.

Now let $(p^*, q^*) \in [0, 1]^2$ be a pair that maximizes H(Y). From the preceding discussion we may assume that $p^* \notin \{0, 1\}$ and $q^* \notin \{0, 1\}$, so the partial derivatives $\frac{\partial H(Y)}{\partial p}$ and $\frac{\partial H(Y)}{\partial q}$, evaluated at $p = p^*$ and $q = q^*$, are well-defined and must be zero. Any linear combination of the partial derivatives also has to be zero, so

$$\begin{aligned} 0 &\stackrel{!}{=} (1 - 2p^*) \cdot \frac{\partial H(Y)}{\partial p} \bigg|_{p = p^*, q = q^*} - (1 - 2q^*) \cdot \frac{\partial H(Y)}{\partial q} \bigg|_{p = p^*, q = q^*} \\ &= (p^* - q^*) \log_2 \frac{p^* q^*}{(1 - p^*)(1 - q^*)}, \end{aligned}$$

© Amos Lapidoth and Stefan M. Moser, 2017

which is satisfied if and only if $q^* = p^*$ or $q^* = 1 - p^*$. If q = 1 - p, then (3) becomes

$$H(Y) = p(1-p)\log_2 \frac{4 \cdot \frac{1}{4}}{p(1-p)} + (2p^2 - 2p + 1)\log_2 \frac{2 \cdot \frac{1}{2}}{2p^2 - 2p + 1} + p(1-p)\log_2 \frac{4 \cdot \frac{1}{4}}{p(1-p)}$$

$$= \frac{3}{2} - 2\left(p - \frac{1}{2}\right)^2 - D\left(\left(p(1-p), 2p^2 - 2p + 1, p(1-p)\right) \parallel \left(\frac{1}{4}, \frac{1}{2}, \frac{1}{4}\right)\right)$$

$$\leq \frac{3}{2},$$
 (5)

so (4) is satisfied. If q = p, then (2) becomes

$$P_Y(y) = \begin{cases} p^2 & \text{if } y = 0, \\ 2p(1-p) & \text{if } y = 1, \\ (1-p)^2 & \text{if } y = 2, \end{cases}$$

which implies that H(Y) is symmetric in p, i.e., $H(Y)|_p = H(Y)|_{1-p}$ holds. It is then sufficient to consider only $p \ge \frac{1}{2}$. Computing the derivative of H(Y) with respect to p leads to

$$\frac{dH(Y)}{dp} = \frac{2}{\ln 2} \cdot \ln \frac{1-p}{p} + 4p - 2
\leq \frac{2}{\ln 2} \left(\frac{1-p}{p} - 1 \right) + 4p - 2
= \frac{-2(2p-1)(1-p\ln 2)}{p\ln 2},$$
(6)

where the inequality holds because $\ln z \leq (z-1)$ is true for all z > 0. Since $1 - p \ln 2 > 0$ holds for all $p \in [0, 1]$, the RHS of (6) is smaller than zero for $p > \frac{1}{2}$, and consequently H(Y) does not attain a maximum for $p > \frac{1}{2}$. By the symmetry of H(Y) in p, the same holds for $p < \frac{1}{2}$. The remaining possibility, $p = \frac{1}{2}$, leads to H(Y) = 1.5 bits. Therefore, (4) is also satisfied in the case q = p. We conclude the proof with the remark that $p = q = \frac{1}{2}$ is in fact the unique maximizer of H(Y). Indeed: In the special cases $p \in \{0, 1\}$ or $q \in \{0, 1\}$, $H(Y) \leq 1$ bit holds; in the case q = 1 - p, (5) only holds with equality if $p = \frac{1}{2}$; and in the case q = p, a value $p \neq \frac{1}{2}$ cannot attain the maximum.