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Problem 1 “Double”-Gaussian Channel

a) The capacity of this channel is given by

C =
1

2
log

(
1 +

1

N

)
.

The corresponding plot is shown in Figure 1.
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Figure 1: Channel capacity C (in bits per channel use) versus noise variance N.

b) Note that the capacity of two independent parallel Gaussian channels with fixed average-
power constraints is

C =
1

2
log

(
1 +

E1

N1

)
+

1

2
log

(
1 +

E2

N2

)
.

The capacity can be achieved with rate-splitting, where one part of the message is transmitted
over one channel and the other part of the message is transmitted over the other channel. The
converse is nearly the same as for the parallel Gaussian channel with a total average-power
constraint and is omitted.
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i) Since the total power is divided equally between the two channels, we have

CA = 2 · 1

2
log

(
1 +

Es

2N

)
= log

(
1 +

Es

2N

)
for scheme A and

CB =
1

2
log

(
1 +

Es

2N1

)
+

1

2
log

(
1 +

Es

2N2

)
for scheme B. From Figure 1, one can guess that the function f : x 7→ log

(
1 + Es

2x

)
is

convex. Indeed, its second derivative satisfies

Es · (4x+ Es)

(2x2 + x · Es)2
· log e > 0

for all positive x. Therefore, using that f is convex,

CA = log

(
1 +

Es

2N

)
= log

(
1 +

Es

2(N1/2 + N2/2)

)
= f

(
1

2
N1 +

1

2
N2

)
≤ 1

2
f(N1) +

1

2
f(N2)

= CB.

Thus, scheme B is better.

ii) Denote the capacity of scheme A with an optimal power allocation by C∗
A, let E1 denote

the power that is assigned to the first channel and let E2 denote the power that is
assigned to the second channel. By the concavity of the logarithm,

C∗
A =

1

2
log

(
1 +

E1

N

)
+

1

2
log

(
1 +

E2

N

)
≤ log

[
1

2

(
1 +

E1

N

)
+

1

2

(
1 +

E2

N

)]
= log

(
1 +

E1 + E2

2N

)
= log

(
1 +

Es

2N

)
= CA.

Denoting the capacity of scheme B with an optimal power allocation by C∗
B, we have

C∗
B

(i)

≥ CB

(ii)

≥ CA

(iii)

≥ C∗
A,

where (i) holds because optimizing the power allocation can only improve the capacity;
(ii) follows from Part b-i); and (iii) is shown above. We conclude that also in the case
of optimal power allocation, scheme B is better.
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Problem 2 Bandlimited Gaussian Channel

If the signal-to-noise ratio P/N0 is small compared to the bandwidth W, then

W log

(
1 +

P

N0W

)
≈ P

N0
log e, (1)

so in this regime doubling the bandwidth has very little effect while doubling the power almost
doubles the capacity. On the other hand, if W is small compared to P/N0, then

W log

(
1 +

P

N0W

)
≈W log

(
P

N0W

)
, (2)

so in this regime the capacity grows only logarithmically in P but almost linearly in W. (The
approximation (1) is a first-order Taylor approximation around P/N0 = 0, and in (2), the first term
of the sum has been neglected.)
It is also possible to perform an exact analysis. Denote by C2W the capacity obtained by doubling
the bandwidth and by C2P the capacity obtained by doubling the power, so

C2W = 2W log

(
1 +

P

2N0W

)
= W log

(
1 +

P

2N0W

)2

= W log

(
1 +

P

N0W
+

P2

4N2
0W

2

)
,

C2P = W log

(
1 +

2P

N0W

)
= W log

(
1 +

P

N0W
+

P

N0W

)
.

Thus, C2P is larger than C2W if and only if P
N0W

is larger than P2

4N2
0W

2 , i.e., if and only if W > P
4N0

.

Problem 3 Exponential Noise Channel

We begin with the converse. We have

I(Xn;Y n) = h(Y n)− h(Y n|Xn)

=
n∑
i=1

[
h(Yi|Y i−1)− h(Yi|Xn, Y i−1)

]
=

n∑
i=1

[
h(Yi|Y i−1)− h(Yi|Xi)

]
≤

n∑
i=1

[
h(Yi)− h(Yi|Xi)

]
=

n∑
i=1

[
h(Xi + Zi)− h(Xi + Zi|Xi)

]
=

n∑
i=1

[
h(Xi + Zi)− h(Zi|Xi)

]
=

n∑
i=1

[
h(Xi + Zi)− h(Zi)

]
.

We use the maximum differential entropy principle to bound h(Xi+Zi). Since E[Xi] ≤ λ and since
E[Zi] = µ, we see that E[Xi + Zi] ≤ λ + µ. The distribution that maximizes differential entropy
among all nonnegative random variables with mean α is the exponential distribution because it has
the form

f∗(x) = eγ0+γ1x · I{x ≥ 0}.
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The exponential distribution with mean α has density

f(x) =
1

α
e−

x
α · I{x ≥ 0}

and differential entropy log(eα) (see Exercise 1). Since the logarithm is a nondecreasing function
and α ≤ λ+ µ, we obtain h(Xi + Zi) ≤ log(e(λ+ µ)). Therefore,

I(Xn;Y n) ≤
n∑
i=1

[
h(Xi + Zi)− h(Zi)

]
=

n∑
i=1

[
h(Xi + Zi)− log(eµ)

]
≤

n∑
i=1

[
log(e(λ+ µ))− log(eµ)

]
= n log

(
1 +

λ

µ

)
,

which, together with Fano’s inequality, shows that C ≤ log
(
1 + λ

µ

)
.

We only provide a sketch of the achievability part (for the interested reader). In order to achieve
equality in the converse, we want the channel output X+Z to have an exponential distribution with
mean λ+µ. Such an input distribution exists: if X is zero with probability µ

µ+λ and exponentially
distributed with mean µ+ λ otherwise, then X +Z has indeed the desired distribution. (This can
be verified with the help of characteristic functions since the characteristic function of the sum of
two independent random variables is the product of the characteristic functions). In order to avoid
the technical issues that arise when the input distribution is a mixture between a discrete and a
continuous distribution, we skip the rest of the achievability proof.
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