(c) Amos Lapidoth and Stefan M. Moser, 2017

Information Theory II

Spring Semester 2017

Prof. Dr. A. Lapidoth / Prof. Dr. S. Moser

Exercise 13 of June 1, 2017

http://www.isi.ee.ethz.ch/teaching/courses/it2.html

Problem 1

Let $\rho > 0$, and let X and Y be distributed according to the joint PMF P_{XY} :

$$\begin{array}{c|c} P_{XY}(x,y) & y=0 & y=1 \\ \hline x=0 & 0.1 & 0.2 \\ x=1 & 0.3 & 0.4 \end{array}$$

- a) Compute $\mathsf{E}[\mathsf{G}^*(X)^{\rho}]$.
- b) Compute $\mathsf{E}[\mathsf{G}^*(X|Y)^{\rho}]$. What do you observe?
- c) Let X_1, X_2, \ldots, X_n be IID P_X . Compute $\lim_{n \to \infty} \frac{1}{n} \log \mathsf{E}[\mathsf{G}^*(X^n)^{\rho}]$.

Problem 2

Problem 3

The Rényi entropy of order α of a discrete chance variable X taking values in \mathcal{X} according to the PMF P_X is defined for $\alpha > 0$ and $\alpha \neq 1$ as

$$H_{\alpha}(X) \triangleq \frac{1}{1-\alpha} \log \sum_{x \in \mathcal{X}} P_X(x)^{\alpha}.$$

- a) Show that $H_{\alpha}(X) \geq 0$ with equality if and only if X is deterministic. *Hint: Treat the cases* $\alpha \in (0, 1)$ *and* $\alpha > 1$ *separately.*
- b) Show that the Rényi entropy approaches Shannon entropy as α approaches unity, i.e.,

$$\lim_{\alpha \to 1} H_{\alpha}(X) = H(X).$$

Rényi Divergence

The Rényi divergence of order α between two PMFs P and Q is defined for $\alpha > 0$ and $\alpha \neq 1$ as

$$D_{\alpha}(P||Q) \triangleq \frac{1}{\alpha - 1} \log \sum_{x \in \mathcal{X}} P(x)^{\alpha} Q(x)^{1 - \alpha}$$

with the convention that for $\alpha > 1$, we read $P(x)^{\alpha}Q(x)^{1-\alpha}$ as $\frac{P(x)^{\alpha}}{Q(x)^{\alpha-1}}$ and say that $\frac{0}{0} = 0$ and $\frac{p}{0} = \infty$ for p > 0.

a) Show that the Rényi divergence approaches relative entropy as α approaches unity, i.e.,

$$\lim_{\alpha \to 1} D_{\alpha}(P \| Q) = D(P \| Q).$$

b) Let U be the uniform distribution over \mathcal{X} . What is $D_{\alpha}(P||U)$?

1

Rényi Entropy

Optimal Guessing

Problem 4

Guessing with Chosen Side Information

Let X_1, X_2, \ldots, X_n be IID P_X , and let $\mathbb{R} \ge 0$. Given the side information $Y_n = f_n(X_n)$, where f_n is a function from \mathcal{X}^n to $\{1, \ldots, 2^{n\mathbb{R}}\}$, the decoder has to guess the sequence X^n .

a) Show that if $\mathsf{R} < H_{\frac{1}{1+\rho}}(X)$, then for every sequence of functions (f_1, f_2, \ldots) ,

$$\lim_{n \to \infty} \mathsf{E}[\mathsf{G}^*(X^n | f_n(X^n))^{\rho}] = \infty.$$

b) Show that if $\mathsf{R} > H_{\frac{1}{1+\rho}}(X)$, then there exists a sequence of functions (f_1, f_2, \ldots) for which

$$\lim_{n \to \infty} \mathsf{E}[\mathsf{G}^*(X^n | f_n(X^n))^{\rho}] = 1.$$

Hint: Partition every type class $P_{\mathbf{x}}$ into $\left\lceil \frac{2^{n\mathsf{R}}}{2(n+1)^{|\mathcal{X}|}} \right\rceil$ subsets. For n large enough, the total number of these sets does not exceed $2^{n\mathsf{R}}$. To bound the number of guesses, you can use the inequality $\lceil \xi \rceil^{\rho} \leq 1 + 2^{\rho}\xi^{\rho}$, which holds for all $\rho > 0$ and $\xi \geq 0$.