Problem 1
Optimal Guessing

Let $\rho > 0$, and let X and Y be distributed according to the joint PMF P_{XY}:

\[
\begin{array}{c|cc}
 & y = 0 & y = 1 \\
 x = 0 & 0.1 & 0.2 \\
x = 1 & 0.3 & 0.4 \\
\end{array}
\]

a) Compute $E[G^*(X)^\rho]$.

b) Compute $E[G^*(X|Y)^\rho]$. What do you observe?

c) Let X_1, X_2, \ldots, X_n be IID P_X. Compute $\lim_{n \to \infty} \frac{1}{n} \log E[G^*(X^n)^\rho]$.

Problem 2
Rényi Entropy

The Rényi entropy of order α of a discrete chance variable X taking values in \mathcal{X} according to the PMF P_X is defined for $\alpha > 0$ and $\alpha \neq 1$ as

\[
H_\alpha(X) \triangleq \frac{1}{1-\alpha} \log \sum_{x \in \mathcal{X}} P_X(x)^\alpha.
\]

a) Show that $H_\alpha(X) \geq 0$ with equality if and only if X is deterministic.

Hint: Treat the cases $\alpha \in (0, 1)$ and $\alpha > 1$ separately.

b) Show that the Rényi entropy approaches Shannon entropy as α approaches unity, i.e.,

\[
\lim_{\alpha \to 1} H_\alpha(X) = H(X).
\]

Problem 3
Rényi Divergence

The Rényi divergence of order α between two PMFs P and Q is defined for $\alpha > 0$ and $\alpha \neq 1$ as

\[
D_\alpha(P\|Q) \triangleq \frac{1}{\alpha - 1} \log \sum_{x \in \mathcal{X}} P(x)^\alpha Q(x)^{1-\alpha}
\]

with the convention that for $\alpha > 1$, we read $P(x)^\alpha Q(x)^{1-\alpha}$ as $\frac{P(x)^\alpha}{Q(x)^{\alpha-1}}$ and say that $\frac{0}{0} = 0$ and $\frac{p}{\infty} = \infty$ for $p > 0$.

a) Show that the Rényi divergence approaches relative entropy as α approaches unity, i.e.,

\[
\lim_{\alpha \to 1} D_\alpha(P\|Q) = D(P\|Q).
\]

b) Let U be the uniform distribution over \mathcal{X}. What is $D_\alpha(P\|U)$?
Problem 4

Guessing with Chosen Side Information

Let X_1, X_2, \ldots, X_n be IID P_X, and let $R \geq 0$. Given the side information $Y_n = f_n(X^n)$, where f_n is a function from X^n to $\{1, \ldots, 2^{nR}\}$, the decoder has to guess the sequence X^n.

a) Show that if $R < H_{\frac{1}{1+\rho}}(X)$, then for every sequence of functions (f_1, f_2, \ldots),

$$
\lim_{n \to \infty} E[G^*(X^n|f_n(X^n))^\rho] = \infty.
$$

b) Show that if $R > H_{\frac{1}{1+\rho}}(X)$, then there exists a sequence of functions (f_1, f_2, \ldots) for which

$$
\lim_{n \to \infty} E[G^*(X^n|f_n(X^n))^\rho] = 1.
$$

*Hint: Partition every type class into $\lceil \frac{2^{nR}}{2(n+1)^{|X|}} \rceil$ subsets. For n large enough, the total number of these sets does not exceed 2^{nR}. To bound the number of guesses, you can use the inequality $[\xi]^\rho \leq 1 + 2^\rho \xi^\rho$, which holds for all $\rho > 0$ and $\xi \geq 0$.**

© Amos Lapidoth and Stefan M. Moser, 2017