Model Answers to Exercise 13 of June 1, 2017

```
http://www.isi.ee.ethz.ch/teaching/courses/it2.html
```

Problem 1

Optimal Guessing

a) We have $P_X(0) = 0.3$ and $P_X(1) = 0.7$. From class we know that it is optimal to guess in
decreasing order of probabilities, so guessing first $X = 1$ and then $X = 0$ is optimal. The
corresponding guessing function is $G^*(1) = 1$ and $G^*(0) = 2$. Therefore,

$$
E[G^*(X)^\rho] = \sum_x P_X(x)G^*(x)^\rho = \frac{7}{10} + \frac{3}{10} \cdot 2^\rho.
$$

b) We have

$$
E[G^*(X|Y)^\rho] = \sum_y P_Y(y) E[G^*(X|Y = y)^\rho]
$$

$$
= \sum_y P_Y(y) \sum_x P_{X|Y=y}(x) E[G^*(x|Y = y)^\rho]
$$

$$
= \sum_y P_Y(y) \left\{ P_{X|Y=y}(1) \cdot 1^\rho + P_{X|Y=y}(0) \cdot 2^\rho \right\}
$$

$$
= P_X(1) \cdot 1^\rho + P_X(0) \cdot 2^\rho
$$

$$
= \frac{7}{10} + \frac{3}{10} \cdot 2^\rho,
$$

where (i) holds because $P_{X|Y=y}(1) > P_{X|Y=y}(0)$ for both $y = 0$ and $y = 1$, so the optimal
guessing order is independent of the side information. Observe that $E[G^*(X|Y)^\rho] = E[G^*(X)^\rho]
holds for all $\rho > 0$ even though X and Y are not independent.

c) We have

$$
\lim_{n \to \infty} \frac{1}{n} \log E[G^*(X^n)^\rho] = \rho H_{\frac{1}{1+\rho}}(X)
$$

$$
= (1 + \rho) \log \sum_x P_X(x)^\frac{1}{1+\rho}
$$

$$
= (1 + \rho) \log \left(\left(\frac{3}{10} \right)^\frac{1}{1+\rho} + \left(\frac{7}{10} \right)^\frac{1}{1+\rho} \right).
$$
Problem 2

Rényi Entropy

a) We first treat the case $\alpha \in (0, 1)$: observe that for all $\alpha \in (0, 1)$ and $p \in [0, 1]$, $p^\alpha \geq p$ holds (with equality if and only if $p = 0$ or $p = 1$). Therefore,

$$\sum_x P_X(x)^\alpha \geq \sum_x P_X(x) = 1,$$

and because $\frac{1}{1-\alpha} > 0$,

$$H_\alpha(X) = \frac{1}{1-\alpha} \log \sum_x P_X(x)^\alpha \geq \frac{1}{1-\alpha} \log 1 = 0.$$

Equality holds if and only if equality holds in (1), which is the case if and only if $P_X(x) \in \{0, 1\}$ for all x, i.e., if and only if X is deterministic.

In the case $\alpha > 1$, observe that $p^\alpha \leq p$ holds for all $\alpha > 1$ and $p \in [0, 1]$ (with equality if and only if $p = 0$ or $p = 1$), so

$$\sum_x P_X(x)^\alpha \leq \sum_x P_X(x) = 1,$$

and because $\frac{1}{1-\alpha} < 0$,

$$H_\alpha(X) = \frac{1}{1-\alpha} \log \sum_x P_X(x)^\alpha \geq \frac{1}{1-\alpha} \log 1 = 0.$$

Equality holds if and only if equality holds in (2), which is the case if and only if $P_X(x) \in \{0, 1\}$ for all x, i.e., if and only if X is deterministic.

b) Without loss of generality, we use the natural logarithm:

$$\lim_{\alpha \to 1} H_\alpha(X) = \lim_{\alpha \to 1} \frac{1}{1-\alpha} \ln \sum_x P_X(x)^\alpha$$

$$= \lim_{\alpha \to 1} \frac{\ln \sum_{x \in \text{supp}(P_X)} P_X(x)^\alpha}{1-\alpha}$$

$$\overset{(i)}{=} \lim_{\alpha \to 1} \frac{\sum_{x \in \text{supp}(P_X)} P_X(x)^\alpha}{1-\alpha} \cdot \ln P_X(x)$$

$$= -\sum_{x \in \text{supp}(P_X)} P_X(x) \ln P_X(x)$$

$$= H(X),$$

where (i) follows from L’Hôpital’s rule because both the numerator and the denominator tend to zero as α tends to one.

Problem 3

Rényi Divergence

a) We first consider the case when an x exists with $P(x) > 0$ and $Q(x) = 0$. Then, $D(P\|Q) = \infty$, $D_\alpha(P\|Q) = \infty$ for $\alpha > 1$, and

$$\lim_{\alpha \uparrow 1} \sum_x P(x)^\alpha Q(x)^{1-\alpha} = \lim_{\alpha \uparrow 1} \sum_{x \in \text{supp}(P) \cap \text{supp}(Q)} P(x)^\alpha Q(x)^{1-\alpha} = \sum_{x \in \text{supp}(P) \cap \text{supp}(Q)} P(x) < 1.$$
so
\[
\lim_{\alpha \to 1} D_\alpha(P\|Q) = \lim_{\alpha \to 1} \frac{1}{\alpha - 1} \log \sum_x P(x)^\alpha Q(x)^{1-\alpha} = \infty.
\]

In the other case, we have \(\text{supp}(P) \subseteq \text{supp}(Q)\) and, using \(S = \text{supp}(P) \cap \text{supp}(Q) = \text{supp}(P)\),
\[
\lim_{\alpha \to 1} D_\alpha(P\|Q) = \lim_{\alpha \to 1} \frac{1}{\alpha - 1} \ln \sum_x P(x)^\alpha Q(x)^{1-\alpha}
= \lim_{\alpha \to 1} \frac{\ln \sum_{x \in S} P(x)^\alpha Q(x)^{1-\alpha}}{\alpha - 1}
= \lim_{\alpha \to 1} \left\{ \left(\sum_{x \in S} P(x)^\alpha Q(x)^{1-\alpha} \right)^{-1} \cdot \sum_{x \in S} P(x)^\alpha Q(x)^{1-\alpha} \ln \frac{P(x)}{Q(x)} \right\} = \sum_{x \in S} P(x) \ln \frac{P(x)}{Q(x)} = D(P\|Q),
\]
where (i) follows from L'Hôpital's rule because both the numerator and the denominator tend to zero as \(\alpha\) tends to one.

b) Since \(U(x) = \frac{1}{|x|}\) for all \(x\), we have
\[
D_\alpha(P\|U) = \frac{1}{\alpha - 1} \log \sum_x P(x)^\alpha \left(\frac{1}{|x|} \right)^{1-\alpha}
= \frac{1}{\alpha - 1} \log |x|^{\alpha-1} - \frac{1}{1 - \alpha} \log \sum_x P(x)^\alpha
= \log |x| - H_\alpha(P).
\]

Problem 4

Guessing with Chosen Side Information

a) We have
\[
\mathbb{E}[G^*(X^n|f_n(X^n))] \geq \frac{1}{|\mathcal{Y}|^\rho} \mathbb{E}[G^*(X^n)^\rho]
\]
\[
\geq \frac{1}{|\mathcal{Y}|^\rho} \frac{1}{1 + \rho} \frac{1}{(n+1)^{(1+\rho)|X|}} 2^{n \max_{Q \in \mathcal{P}_n(X)} \{\rho H(Q) - D(Q\|P)\}}
= 2^{-n \rho \mathbb{E}} \frac{1}{1 + \rho} \frac{1}{(n+1)^{(1+\rho)|X|}} 2^{n \max_{Q \in \mathcal{P}_n(X)} \{\rho H(Q) - D(Q\|P)\}}
= 2^{-n \rho \mathbb{E}} \frac{1}{1 + \rho} \frac{1}{(n+1)^{(1+\rho)|X|}} 2^n \{H_{1/(1+\rho)}(X) - \delta_n\}
= \frac{1}{1 + \rho} \frac{1}{(n+1)^{(1+\rho)|X|}} 2^n \{H_{1/(1+\rho)}(X) - \delta_n\}
\]
where (i) and (ii) follow from the lecture notes; and \(\delta_n\) is defined as
\[
\delta_n = \frac{1}{\rho} \left[\max_{Q \in \mathcal{P}_n(X)} \{\rho H(Q) - D(Q\|P)\} - \max_{Q \in \mathcal{P}_n(X)} \{\rho H(Q) - D(Q\|P)\}\right]
= H_{1/(1+\rho)}(X) - \frac{1}{\rho} \max_{Q \in \mathcal{P}_n(X)} \{\rho H(Q) - D(Q\|P)\}.
\]

© Amos Lapidoth and Stefan M. Moser, 2017 3
Because $R < H_{1/(1+\rho)}(X)$ and because δ_n tends to zero as n tends to infinity, there exist $\gamma > 0$ and n_0 such that
\[
H_{1/(1+\rho)}(X) - \delta_n - R \geq \gamma
\]
holds for all $n \geq n_0$. Consequently, for all such n,
\[
E[G^*(X^n|f_n(X^n))]^\rho \geq \frac{1}{1 + \rho} \frac{1}{(n + 1)^{(1+\rho)|X|}} 2^{nR\gamma}, \tag{3}
\]
and since the RHS of (3) tends to infinity as n tends to infinity, the LHS of (3) must also tend to infinity as n tends to infinity.

b) We partition every type class into $k_n = \left\lceil \frac{2^{nR}}{2((n+1)^{|X|}} \right\rceil$ subsets. Because R is positive, there exists a n_0 such that
\[
2^{nR} \geq 2(n + 1)^{|X|} \tag{4}
\]
holds for all $n \geq n_0$. Since we are only interested in the large-n asymptotics, we assume from now on that n is such that (4) holds. Then, the total number of sets can be bounded as
\[
|\mathcal{P}_n(X)| \cdot k_n \leq (n + 1)^{|X|} \cdot k_n = (n + 1)^{|X|} \cdot \left(\frac{2^{nR}}{2(n + 1)^{|X|}} + 1 \right)
\leq \frac{1}{2} \cdot 2^{nR} + \frac{1}{2} \cdot 2(n + 1)^{|X|}
\leq \frac{1}{2} \cdot 2^{nR} + \frac{1}{2} \cdot 2^{nR}
= 2^{nR},
\]
where (i) follows from (4). Since there are at most 2^{nR} such sets, we can use f_n to encode the set to which a sequence x^n belongs. For a given sequence x^n of type Q, the decoder therefore learns to which subset of which type class the sequence belongs and the number of guesses is upper bounded by $\left\lceil \frac{|T^n(Q)|}{k_n} \right\rceil$. Consequently,
\[
E[G^*(X^n|f_n(X^n))]^\rho = \sum_{Q \in \mathcal{P}_n(X)} \sum_{x^n \in T^n(Q)} P_X^n(x^n) \cdot G^*(x^n|f_n(x^n))^\rho
\leq \sum_{Q \in \mathcal{P}_n(X)} \sum_{x^n \in T^n(Q)} P_X^n(x^n) \cdot \left\lceil \frac{|T^n(Q)|}{k_n} \right\rceil^\rho
\leq \sum_{Q \in \mathcal{P}_n(X)} P_X^n(T^n(Q)) \cdot \left\lceil \frac{|T^n(Q)|}{k_n} \right\rceil^\rho (i)
\leq \sum_{Q \in \mathcal{P}_n(X)} P_X^n(T^n(Q)) \cdot \left\lceil \frac{|T^n(Q)|}{k_n} \right\rceil^\rho \cdot k_n^{-\rho}
\leq 1 + \rho \cdot \sum_{Q \in \mathcal{P}_n(X)} 2^{-nD(Q||P_X)} \cdot 2^{n\rho H(Q)} \cdot 2^{-n\rho R} 2^\rho (n + 1)^{\rho|X|}
\leq 1 + 4^\rho (n + 1)^{\rho|X|} \cdot 2^{-n\rho R} \sum_{Q \in \mathcal{P}_n(X)} 2^{n\rho H(Q) - D(Q||P_X))}$
\[\leq 1 + 4^\rho (n + 1)^{\rho |X|} \cdot 2^{-n\rho R} \cdot (n + 1)^{|X|} 2^n \max_{Q \in \mathcal{F}(X)} \{ \rho H(Q) - D(Q \parallel P_X) \} \\
= 1 + 4^\rho (n + 1)^{(1 + \rho)|X|} \cdot 2^{n\rho} [H_{1/(1+\rho)}(X) - R], \]

(5)

where (i) follows from the inequality

\[[\xi]^{\rho} \leq 1 + 2^\rho \xi^\rho, \]

(6)

which holds for all \(\rho > 0 \) and \(\xi \geq 0 \); and (ii) holds because \(k_n \geq \frac{2^{nR}}{(n+1)^{|X|}} \). (It is easy to see that (6) is valid: for \(\xi \in [0, 1] \), it holds trivially, and for \(\xi \geq 1 \), we have \(\xi + 1 \leq 2\xi \) and therefore \([\xi]^{\rho} \leq (\xi + 1)^{\rho} \leq (2\xi)^{\rho} \leq 1 + 2^\rho \xi^\rho \).

Because \(R > \frac{H_{1/(1+\rho)}(X)}{1} \), the RHS of (5) tends to one as \(n \) tends to infinity. Since the LHS of (5) is lower bounded by one, it follows from the sandwich theorem that the LHS of (5) also tends to one as \(n \) tends to infinity.