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ABSTRACT

The use of coding in digital communications,to
be effective,requires that the modulation system be
designed on an unconventional basis. Rather than
using "error probability" as the modulation criter-
ion, this paper argues that the appropriate modula-
tion criterion is the "cut-off rate" R_ of the dis-
crete channel which the modulation system creates.

It is then shown that the R_ criterion leads to a
rich "communication theory"of its own in which the
optimality of the simplex signal set can be proved
(rather than conjectured) and in which "soft deci-
sion" demodulators can be systematically designed.

At the same time, the Ro criterion leads to a modula-
tion system compatible with the use of effective cod-
ing techniques in an overall efficient digital com-
Munication system.

I. Introduction

Information theory has been around for a suffi-
ciently long time that its model of a digital com-
munication system, given in Fig. 1, no longer star-
tles the communications engineer. Most communica-
tions engineers would now agree that encoding and
modulation are both-aspects of the signal design
problem, and that demodulation and decoding are like-
wise both aspects of the signal detection problem.
Yet coding techniques, in spite of the great re-
search effort and resultant large literature thereon,
are seldom used in practical systems. Ten years ago,
the "experts" held that coding was an interesting
intellectual game that lacked practical relevance;
their motto was then "Coding is dead." In the mean-
time, coding has been used with spectacular success
in deep-space communications. Now the "experts'" are
saying that the deep-space channel, i.e. the additive
white Gaussian noise channel constrained in energy
but not in bandwidth, is the only channel where
coding techniques will ever be practical. The motto
is now "Coding is dead except for the deep-space
channel."

In this paper, we shall argue that this pessi-
mism sbout coding stems from the failure of communi-
cations engineers truly to accept the basic model of
Fig. 1.

In Section III, we define certain concepts im=-
plicit in Fig. 1. We then argue in Section IV that
acceptance of the Fig. 1 model forces the communi-
cations engineer to discard "error probability" as a
modulation design criterion in favor of what we call
the "R criterion" where R_ is the cut-off rate of
the diScrete memoryless channel createdsby the modu-
lation system. Although the R_ criterion is intend-
ed to lead to design of modulagion systems which are
compatible with effective coding systems, we show in
the remainder of the paper that the Ro criterion
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leads to a "communication theory" in many ways
stronger and more profound than that based on "error
probability."” To illustrate this point, we prove in
Section V that the simplex signal set is optimum

for the R_ criterion on the additive White Gaussian
noise channel. From our proof, we are able to make
some fundamental observations that apply to all
signal sets. Finally, in Section VI we show how

the R_ criterion leads to the systematic design of
"soft®decision" demodulators for which an "error
probability" criterion would be meaningless.

II. Basic Definitions

We shall suppose the encoded digits X in Fig. 1
are q-ary letters, i.e. that the modulator can
generate any of q signals as the transmitted wave-
form s(t) in each signalling interval. The rate R
Oof the coding systems is the number of binary digits
U per encoded digit X (on a long-time basis), i.e.
the number of source bits sent per use of the chan-
nel. We shall suppose that the demodulated digits
Y are q'-ary letters where in general q'=q. The
decoder output digits U are the estimates of the
source delivered to the sink.

From the coding viewpoint, the modulator, wave-
form channel, and demodulator together constitute a
discrete channel with q input letters and q' output
letters.
i.e. that the channel acts independently in each
signalling interval, an assumption which is not so
restrictive as might first appear since nothing pre-
vents the signalling intervals from being very long
(and in fact comprising many intervals from a
"smaller" modulator.) In information theory parl-
ance, X and Y constitute the input and output digits
respectively of a discrete memoryless channel or
(DMC). We shall let P(y|x) denote the probability
of receiving the output letter y when the input
letter x is sent, and these transition probabilities
completely define the DMC.

IITI. A Sensible Modulation Criterion

The design criterion for modulation systems in
almost universal use is "error probability," i.e.
P(y$x). For this criterion to be meaningful, it is
necessary to choose q'=q (usually both are 2) so
that the input and output letters can share the
same alphabet--a seemingly innocuous step that is
fatal to the effective use of coding. The communi~
cations engineer who uses this criterion presumes
that the purpose of coding is to "correct errors"
made by the demodulator, and he commonly refers to
codes in general as "error-correctine codes." Fe
somehow believes that if the "error probability" is
unacceptably large, then coding should be able to
rescue his design and he is inevitably disappointed
to learn that the necessary code redundancy is so
large that his overall system is quite inefficient.

(1)

We shall assume this channel is memoryless,



The next step is to redesign the modulation system
to give an acceptable "error probability" without
coding.

The crux of the problem is that "error probabil-
ity"is a modulation design criterion which is sensi-
ble only if coding is not used. It should then not
be surprising that modulation systems designed on
this basis prove to be ill-matched to coding systems.

Our discussion in the previous section suggests
that the real goal of the modulation system is to
create the "best" DMC as seen by the coding system.
We now argue that the sensible design criterion for
a digital modulation system is the cut-off rate R
of this DMC, the bigger R for a given average °
energy E in the signalling interval, the better the
modulation system. Mathematically, R is given by

= -log, {min Z[ngzy|x5 alx) 1%} (1)
2ax)y x

where the minimization is over all probability dis-
tributions Q(x) on the channel input letters.

The true error probability of interest in Fig. 1
is PesP(U#U), i.e. the probability that the bit
delivered to the sink differs from that which came
from the source. Since the work of Viterbil, it has
been known that if convolutional coding techniques
are used on the DMC, then one can achieve

-nR
Pe < cR2

vhere g is a small constant best found by simulation
and where n is the constraint length (in channel
letters) of the convolutional code. The one number
R then gives both a region of rates where it is
possible to operate with arbitrarily small probabil-
ity of error and an exponent of error probability
(which Viterbi has shown is the best possible expo-
nent for rates R near R _.) No other single number
gives such useful intorﬁation, not even "channel
Capacity" which gives only a range of rates where
operation is possible. Moreover, R_is also the

"R " of sequential decoding?, i.8. the rate above
whiSEPthe average number of decoding steps per de-
coded digit becomes infinite. In practice, sequen-
tial decoders can comfortably operate at rates R

o if RR_ (2)

near R (or even slightly greater, but only slightly).

The thesis that R_ is the sensible criterion for
modulation system desfgn is not new. Some years ago,
Wozencraft and Kennedy® made this same proposal but
it fell then on deaf ears. The intervening years
have supplied results that now let us resurrect
their proposal and to demonstrate that not only is
it the logically right criterion but also that it
can be effectively employed in modulation system
design.

IV, Signal Space Considerations

We now suppose that the signal s(t) can be
written as a linear combination of N orthonormal
functions and hence representable by the vector s
of its coefficients in this expansion. We presume
that r(t) is reduced to its projection r on these
same functions.

-
-

If one first considers a demodulator which
merely passes along r to the decoder (requiring of
course q'==), one obtains an R which upper bounds

that for any practical demodulator. Demodulator
design then reduces to selecting a finite q' which

does not materially reduce the unquantized R_. It
is easily seen from (1) that the unquantized R is
iven

g by q q 4=

= -log,{min 1 1 f'fpiigjpdzgjdgg(i)m(d)} (3)

a(x)i=1 j=l-=

where p,( ) is the density function for r given
that the i-th signal vector, 8 is transmitted.

The surprising aspect of (3), which seems not
to have been previously noticed, is that the for-
midable-looking integral which it contains can often
be easily evaluated. For instance, when the channel
hes additive white Gaussian noise (AWGN) so that
r=s+n where the components of n are statistically
I'ndependent Gaussian random variables with means O
and variances N /2, then (3) reduces to the remark-
ably simple °

qQ q -|s -

2
8 | JuN
R, = -log,{min ] Je =3
Q(i)i=1 j=1

[My student, R. Johannesscn, has recently obtained s
similarly simple evaluation of (3) when n is a
general Gaussian variate and is presently extending
the results of this paper to that case, i.e. to the
non-white additive Gaussian noise channel.]

%a(1)a(d)r (W)

With (4), we now have a closed-form expression
for the unquantized (q'==w) Ro of the AWGN channel
which is quite amenable to analysis.

" V. Simplex Optimality

It has long been conjectured, but never proved,
that for the "error probability"” criterion the best
set of q signal vectors with average energy E on the
AWGN channel is the simplex set. We now prove that
for the R° criterion the simplex is indeed optimal.

We see from (4) that R_ depends only on the
differences between signal Vvectors, so that for a
given average energy

E= Z s, 12a(1) (5)
i=1

an optimal signal set will have its centroid at the
origin, i.e. we may suppose without loss of
optimality that

121"1Q(i) = Q. (6)

With some slight manipulation, we find that (5) and
(6) imply

Z ZI
i=1 j=1

which has a surprising simplicity of its own. [We
also note that (7) is unchanged if we exclude the
term for j=i in the second summation.]

5,2, 1%(1)0(s) = 28 (1)

Now letting

b=§ Q2(1) (8)
i=1 .

we can rewrite (L) as

E2 (2)
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R, = -log,{min (b+] Je J
Q(i) i=1 3=1
JH
Now using the convexity of the exponential (and not-
ing that the factors Q(i)Q(J) sum to 1-b) and
meking use of (7), we obtain
-E/2N_(1-b)
R. < =log,{min [b+(1-b)e ° 1} (9)
o - 2 .
Q(i)
with equality if and only if ls -8 | is independent
of 1 and J when i%J, i.e. if and ofily if the signal
set is a simplex. The minimizing Q(i) in (9) is
easily seen to be Q(i)=1/q for all i which gives
-qE/(q-1)2N
R < +logya —log2[1+(q-l)e ] (10)

with equality if and only if the signal set is a
simplex whose signal vectors are equally likely.

Inequality (1) has some profound implications
for digital communications. For the simplex set,
(10) hold with equality so we see further that

qE/(q-1)2N

dR
—2 = 0.72 N a/le ° 4 (g-1)] (11)

dE
which decreases monotonically with E. Hence signal
energy is most effectively used when E/N_ is small
(and hence when the "error probability" Yould be
large if we were designing & conventional modulation
system.) On the other hand, the derivatjve in (11)
is nearly equal to its maximum value at ﬁ'=0 in the

range where the exponential term is domingted by
(q-1) and in this range we have

dRo 1
a—E—- = T2 I‘I_ . (12)
o
Hence
E
R, < .T2 N (13)

is an upper bound applying to any modulation scheme
(regardless of q) for the AWGN channel and holding
with near equality for the g-ary simplex in the
region

%’ 2 log,q.
[¢)
This shows that the only reason one might choose a
large q (rather than q=2) would be if system con-
straints required a large value of E/N_ since then
a large q is required for operation in~the energy-
efficient range where (13) holds with near equality.

VI. Demodulator Considerations

If one thing were ever clear, it is certainly
that the "error probability" criterion is useless
when designing & demodulator to make "soft decisions"
(q'>q) rather than "hard decisions" (q'=q). On the
other hand, the R_criterion is natural for guiding
the communications engineer in this task as we now
proceed to show.

Suppose for simplicity of discussion that binary

modulation, i.e. q=2, is to be used. We have al-
ready seen how the unquantized (i.e. q'==) Ro bounds

1974 ZURICH SEMINAR

the performance for any demodulator. In practice,
one would examine the R attainable with q'=2,4,8,
16,... until one had obfained an R sufficiently
close to the unquantized R_ to Jus%ify a practical
choice at this smaller numBer of quantization levels.
To carry out such a design procedure, one needs only
to know how, for a given q', to set the quantization
levels so as to optimize the resulting R_. Again
this problem is nicely amenable to soldtion.

For a given q', the modulation system reduces
to a DMC with q=2 input letters (which we call 0 and
1) and q' output letters (which we call ¥. ¥ seo-
¥ _,). For a given output letter yi, we define its
1¥kelihood ratio as

P(y,|0)
M) = T - (11)
For q=2, it is easily seen that the optimizing Q(x)

in (1) is always Q(0)=0(1)=1/2 so that (1) reduces
to

q' '
R =1 -1032[1+izl/§2y1[oSPZyihS]. (15)

For a given received vector a, we define its likeli-~
hood ratio as

p,(2)
Me) = o
1=

vhere p (a) is the density function in effect for r
when O s sent. Without loss of optimality in R _,
one can always first convert a to A(a) and hence®con-
sider the demodulator design problem as that of
choosing quantization thresholds for the scalar .
quantity A(a). Let T be a quantization threshold
between regions of A(g) where yi and y, respectively
will be the demodulator output.” If T ls optimally
chosen, one must have

oR
o

3T = 0,
Applying this condition in (15), one can readily
show that

/Ao, JA(b,)
T = /Alp (e, (16)
is the necessary condition for T to be optimal. Tt
follows that the quantization of A(a) is optimal if
and only if each quantization threshold is the
geometric mean of the likelihood ratios for the re-
sulting demodulator output letters whose decision
regions the threshold separates.

This result suggests the following algorithm to
find an optimal set of thresholds for a given desired
number q' of output letters. Let y, be the output
letter if Ti_1<x(g)§? where of course T = -« and
T ,= +®, Ofie"chooses T, arbitrarily which then
a%termines A(y.). One then finds T, so that T
satisfies 16. “The choice of T, then determines
A(y2) and one then finds T. so“that T, satisfies (16).
Ete. If this procedure cag be comple%ed but T _,
does not satisfy (16), then T. must be increas&d”
and the procedure repeated. }f the procedure can-
not be completed, then T1 must be decreased and the
procedure repeated.

B2 (3)
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that q'=8 signal levels is practically optimum, but
using ‘"hard decisions" (q'=2) results in serious
loss of optimality (sbout 2dB).

Our mein interest in this section has been to
‘ show that the R_ criterion provides the communica- _
tions engineer with a useful way to approach the R
elusive problem of designing "soft decision" de-

modulators, but our example is illustrative of the Information| U X

general fact that rarely will a "hard decision" Source Encoder Modulstor

demodulator be a practically optimum choice. The (%)
' 1

: use of a hard decision demodulator will often cause
) a loss of R_ which translated into dB may well be

on the same order as the gain which a sensible cod- Vaveforn
ing system could provide. _Chaonel

VI. Remarks yrit)

(=31

Information Decoder | Y Demodulator |

In the above, we have tried to show that the R Sink

criterion is the sensible one for design of modulal
tion systems in coded digital communications systems.
We have also attempted to demonstrate that this
criterion is at least as simple to handle in dealing
with signal design questions as is demodulator "error Figure 1. The Basic Information-Theoretic
probability"” and that, moreover, the R criterion Model of a Digital Communication System
offers guidance in such matters as the°design of

"soft decision" demodulators where the "error

probability” criterion is mute.

It may seem curious that in a paper intended to
deal with coding we have deelt mainly with modula-
tion philosophy. But it is our belief that until
modulation systems are designed on an R_ basis the
coding engineer will inevitably be faced with a
discrete channel for which coding techniques are
largely ineffective. It is paramount to the design
of efficient coded systems that the modulation
A engineer aim at maximizing R _using as simple a
: signal set (small q) as possible and a consistently
) larger q'. The net result will be a system where
f the "error probability" would be large if the de-

? modulator were then compelled to make "hard deci-

% sions." Coding techniques such as sequential de-
:

.

/

:

codins3, Viterbi dec:od;l.ng2 and threshold decoding",
all of which employ convolutional codes and make use
of the "soft decision" information provided by the
demodulator, will then naturally suggest themselves
as solutions to the design of the coded portion of
the over-all digital communications system.

-
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