
ISlT 2000, Sorrento, Italy, June 25-30,2000 

On the Gaussian Watermarking Game 
Aaron Cohen’ Amos Lapidoth 

Massachusetts Inst. of Technology Swiss Federal Inst. of Technology 
77 Mass. Ave., 35-303 ETH-Zentrum 
Cambridge, MA 02139 CH-8092, Zurich, Switzerland 

e-mail: acohenhit . edu e-mail: lapidoth@isi . ee . ethz . ch 
Abstract - We compute the value of the water- 

marking game for a Gaussian covertext and squared- 
error distortions. Both the public version of the game 
(covertext known to neither attacker nor decoder) and 
the private version of the game (covertext unknown 
to attacker but known to decoder) are treated. Sur- 
prisingly, the two versions yield identical values. 

I. INTRODUCTION 
The watermarking game [l, 21 can model a situation 

where an original source sequence (“covertext”) needs to  be 
copyright-protected before it is distributed to  the public. 
The copyright (“message”) needs to  be embedded in the dis- 
tributed version (“stegotext”) so that no “attacker” with ac- 
cess to  the stegotext will be able produce a “forgery” that re- 
sembles the covertext and yet does not contain the embedded 
copyright message. The watermarking process ( “encoding”) 
should, of course, introduce little distortion so as to  guaran- 
tee that the stegotext closely resembles the original covertext. 

Different messages may correspond to  different possible 
owners, versions, dates, etc. of the covertext, and it is thus 
of interest to  study the number of distinct messages that can 
be embedded if reliable decoding is required from any rea- 
sonable forgery. The highest exponential rate at which this 
number can grow in relation to  the covertext size is the cod- 
ing value of the game. A precise statement of this problem 
and some proofs can be found in [3]. 

11. WATERMARKING MODEL 

The watermarking game can be described as follows. A 
source emits the zero-mean variance-a: IID length-n covertest 
sequence U. Independently of U, a copyright message W is 
drawn uniformly over the set W, = (1,. . . , L2”RJ}, where R 
is the rate of the system. 

Using a secret key 0 1 ,  which is independent of U and W ,  
the encoder produces the stegotest X = X ( U ,  W, 01) E R”. 
We require the encoder to  satisfy $JIX-U112 5 D1 , as., where 
D1 > 0 is a given constant called the encoder distortion level, 
and a s .  stands for “almost surely”. 

The attacker, which is assumed to  be ignorant of U and 
0 1 ,  produces a forgery Y = Y(X,02)  E R” based on X 
and its own attack key 0 2 .  We similarly require the attacker 
to satisfy kIIY - X1I2 5 Dz, as., where DZ > 0 is a given 
constant called the attacker distortion level. 

The decoder produces an estimate of the message W .  In 
the public version of the game, the decoder oply uses the en- 
coder’s secret key and the forgery, so that W = W(Y,01). 
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In the private uersifn of !he game, the decoder also uses the 
covertext, so that W = W(Y, 0 1 ,  U). We consider the prob- 
ability of error averaged over the covertext, message and both 
sources of randomness, which is written pe(n) = Pr(@ # W). 

We adopt a conservative approach to  the watermarking 
game and assume that once the watermarking system is em- 
ployed, its details are made available to  the attacker. The 
attacker can thus optimize for the encoder and decoder. This 
precludes the decoder from using the maximum-likelihood de- 
coding rule. We thus say that rate R is achievable if there ex- 
ists a sequence of allowable rate-R encoder and decoder pairs 
such that for any sequence of allowable attackers, peen) tends 
to  zero as n tends to  infinity. 

The value of the game is called the coding capacity, and 
it is the supremum of all achievable rates. We write the cod- 
ing capacity as Cpriv(D1, D2, a:) and Cpub(Di, &,a:) for the 
private and public versions of the game, respectively. 

Theorem 1. For the Gaussian watermarking game, 

is empty, then Cpriv(D1, Dz, a:) is ze,ro. Otherwise, 
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If expected rather than a.s. distortion constraints are used, 
then the coding capacity for  both versions is zero. 

Note that the optimal A is a root of a cubic equation and 
hence a closed form solution for the capacity exists. Differ- 
ent capacity results for yet another version of this game with 
expected distortion constraints and a decoder that knows the 
attack strategy (ML decoder) have been recently reported in 
PI. 
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